Horne Jon S, Garton Edward O, Krone Stephen M, Lewis Jesse S
University of Idaho, Department of Fish and Wildlife, Moscow, Idaho 83844, USA.
Ecology. 2007 Sep;88(9):2354-63. doi: 10.1890/06-0957.1.
By studying animal movements, researchers can gain insight into many of the ecological characteristics and processes important for understanding population-level dynamics. We developed a Brownian bridge movement model (BBMM) for estimating the expected movement path of an animal, using discrete location data obtained at relatively short time intervals. The BBMM is based on the properties of a conditional random walk between successive pairs of locations, dependent on the time between locations, the distance between locations, and the Brownian motion variance that is related to the animal's mobility. We describe two critical developments that enable widespread use of the BBMM, including a derivation of the model when location data are measured with error and a maximum likelihood approach for estimating the Brownian motion variance. After the BBMM is fitted to location data, an estimate of the animal's probability of occurrence can be generated for an area during the time of observation. To illustrate potential applications, we provide three examples: estimating animal home ranges, estimating animal migration routes, and evaluating the influence of fine-scale resource selection on animal movement patterns.
通过研究动物的移动,研究人员能够深入了解许多对于理解种群水平动态至关重要的生态特征和过程。我们开发了一种布朗桥运动模型(BBMM),用于利用在相对较短时间间隔内获得的离散位置数据来估计动物的预期移动路径。BBMM基于连续位置对之间的条件随机游走特性,取决于位置之间的时间、位置之间的距离以及与动物移动性相关的布朗运动方差。我们描述了两项关键进展,它们使得BBMM能够广泛应用,包括在位置数据存在测量误差时模型的推导以及用于估计布朗运动方差的最大似然方法。在将BBMM拟合到位置数据后,可以生成观测期间某一区域内动物出现概率的估计值。为了说明潜在应用,我们提供了三个例子:估计动物的家域、估计动物的迁徙路线以及评估精细尺度资源选择对动物移动模式的影响。