Hemschemeier A, Happe T
Ruhr-Universität-Bochum, Fakultät für Biologie, Biochemie der Pflanzen, AG Photobiotechnologie, 44780 Bochum, Germany.
Biochem Soc Trans. 2005 Feb;33(Pt 1):39-41. doi: 10.1042/BST0330039.
The photosynthetic green alga Chlamydomonas reinhardtii is capable of performing a complex fermentative metabolism which is related to the mixed acid fermentation of bacteria such as Escherichia coli. The fermentative pattern includes the products formate, ethanol, acetate, glycerol, lactate, carbon dioxide and molecular hydrogen (H(2)). H(2) production is catalysed by an active [Fe]-hydrogenase (HydA) which is coupled with the photosynthetic electron-transport chain. The most important enzyme of the classic fermentation pathway is pyruvate formate-lyase, which is common in bacteria but seldom found in eukaryotes. An interaction between fermentation, photosynthesis and H(2) evolution allows the algae to overcome long periods of anaerobiosis. In the absence of sulphur, the cells establish a photofermentative metabolism and accumulate large amounts of H(2).
光合绿藻莱茵衣藻能够进行复杂的发酵代谢,这与大肠杆菌等细菌的混合酸发酵有关。发酵模式包括产生甲酸、乙醇、乙酸、甘油、乳酸、二氧化碳和分子氢(H₂)。H₂的产生由一种活性[Fe] - 氢化酶(HydA)催化,该酶与光合电子传递链偶联。经典发酵途径中最重要的酶是丙酮酸甲酸裂解酶,它在细菌中常见,但在真核生物中很少见。发酵、光合作用和H₂释放之间的相互作用使藻类能够克服长时间的厌氧状态。在缺乏硫的情况下,细胞建立光发酵代谢并积累大量H₂。