Suppr超能文献

在固态纳米孔中对 ssDNA 的运动进行特征化和控制。

Characterizing and controlling the motion of ssDNA in a solid-state nanopore.

机构信息

IBM T. J. Watson Research Center, Yorktown Heights, New York, USA.

出版信息

Biophys J. 2011 Nov 2;101(9):2214-22. doi: 10.1016/j.bpj.2011.08.038. Epub 2011 Nov 1.

Abstract

Sequencing DNA in a synthetic solid-state nanopore is potentially a low-cost and high-throughput method. Essential to the nanopore-based DNA sequencing method is the ability to control the motion of a single-stranded DNA (ssDNA) molecule at single-base resolution. Experimental studies showed that the average translocation speed of DNA driven by a biasing electric field can be affected by ionic concentration, solvent viscosity, or temperature. Even though it is possible to slow down the average translocation speed, instantaneous motion of DNA is too diffusive to allow each DNA base to stay in front of a sensor site for its measurement. Using extensive all-atom molecular dynamics simulations, we study the diffusion constant, friction coefficient, electrophoretic mobility, and effective charge of ssDNA in a solid-state nanopore. Simulation results show that the spatial fluctuation of ssDNA in 1 ns is comparable to the spacing between neighboring nucleotides in ssDNA, which makes the sensing of a DNA base very difficult. We demonstrate that the recently proposed DNA transistor could potentially solve this problem by electrically trapping ssDNA inside the DNA transistor and ratcheting ssDNA base-by-base in a biasing electric field. When increasing the biasing electric field, we observed that the translocation of ssDNA changes from ratcheting to steady-sliding. The simulated translocation of ssDNA in the DNA transistor was theoretically characterized using Fokker-Planck analysis.

摘要

在合成固态纳米孔中对 DNA 进行测序可能是一种低成本、高通量的方法。基于纳米孔的 DNA 测序方法的关键是能够以单碱基分辨率控制单链 DNA(ssDNA)分子的运动。实验研究表明,在偏置电场驱动下,DNA 的平均迁移速度可以受到离子浓度、溶剂粘度或温度的影响。尽管可以降低平均迁移速度,但 DNA 的瞬时运动过于扩散,无法让每个 DNA 碱基在传感器位置停留以进行测量。我们使用广泛的全原子分子动力学模拟研究了 ssDNA 在固态纳米孔中的扩散常数、摩擦系数、电泳迁移率和有效电荷。模拟结果表明,ssDNA 在 1 ns 内的空间波动与 ssDNA 中相邻核苷酸之间的间距相当,这使得对 DNA 碱基的检测变得非常困难。我们证明,最近提出的 DNA 晶体管可以通过在 DNA 晶体管内部电捕获 ssDNA 并在偏置电场中逐个碱基棘轮 ssDNA 来解决这个问题。当增加偏置电场时,我们观察到 ssDNA 的迁移从棘轮式变为稳定滑动。使用福克-普朗克分析对 DNA 晶体管中 ssDNA 的模拟迁移进行了理论表征。

相似文献

3

引用本文的文献

2
Decoding DNA, RNA and peptides with quantum tunnelling.用量子隧穿技术解码 DNA、RNA 和肽。
Nat Nanotechnol. 2016 Feb;11(2):117-26. doi: 10.1038/nnano.2015.320.
3
The evolution of nanopore sequencing.纳米孔测序的发展历程。
Front Genet. 2015 Jan 7;5:449. doi: 10.3389/fgene.2014.00449. eCollection 2014.
5
Slow DNA transport through nanopores in hafnium oxide membranes.氧化铪纳米孔内 DNA 的缓慢传输。
ACS Nano. 2013 Nov 26;7(11):10121-10128. doi: 10.1021/nn404326f. Epub 2013 Oct 4.
6
Nanopore detection of DNA molecules in magnesium chloride solutions.在氯化镁溶液中对 DNA 分子进行纳米孔检测。
Nanoscale Res Lett. 2013 May 20;8(1):245. doi: 10.1186/1556-276X-8-245. eCollection 2013.
9
Third-generation sequencing techniques and applications to drug discovery.第三代测序技术及其在药物发现中的应用。
Expert Opin Drug Discov. 2012 Mar;7(3):231-43. doi: 10.1517/17460441.2012.660145. Epub 2012 Feb 2.

本文引用的文献

1
Electrochemical protection of thin film electrodes in solid state nanopores.固态纳米孔中薄膜电极的电化学保护。
Nanotechnology. 2011 Jul 8;22(27):275304. doi: 10.1088/0957-4484/22/27/275304. Epub 2011 May 20.
2
Control and reversal of the electrophoretic force on DNA in a charged nanopore.在带电荷的纳米孔中控制和反转 DNA 的电泳力。
J Phys Condens Matter. 2010 Nov 17;22(45):454123. doi: 10.1088/0953-8984/22/45/454123. Epub 2010 Oct 29.
6
8
Nanopore DNA sequencing with MspA.使用 MspA 进行纳米孔 DNA 测序。
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16060-5. doi: 10.1073/pnas.1001831107. Epub 2010 Aug 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验