Suppr超能文献

非共价双功能有机催化剂:连续构建季碳-季碳手性中心的有力工具、对映选择性的范围和起源。

Noncovalent bifunctional organocatalysts: powerful tools for contiguous quaternary-tertiary stereogenic carbon formation, scope, and origin of enantioselectivity.

机构信息

School of Engineering & Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.

出版信息

Chemistry. 2012 Mar 26;18(13):4088-98. doi: 10.1002/chem.201103005. Epub 2012 Feb 22.

Abstract

Relying on the assembly of commercially available catalyst building blocks, highly stereocontrolled quaternary carbon (all carbon substituted) formation has been achieved with unmatched substrate diversity. For example, the in situ assembly of a tricomponent catalyst system allows α-branched aldehyde addition to nitroalkene or maleimide electrophiles (Michael products), while addition to an α-iminoester affords Mannich reaction products. Very good yields are observed and for fifteen of the eighteen examples 96-99 % ee is observed. Using racemic α-branched aldehydes, two contiguous (quaternary-tertiary) stereogenic centers can be formed in high diastereo- and enantiomeric excess (eight examples) via an efficient in situ dynamic kinetic resolution, solving a known shortcoming for maleimide electrophiles in particular. The method is of practical value, requiring only 1.2 equiv of the aldehyde, a 5.0 mol % loading of each catalyst component, for example, O-tBu-L-threonine (O-tBu-L-Thr), sulfamide, DMAP or O-tBu-L-Thr, KOH, and room temperature reactions. As a highlight, the first demonstration of ethylisovaleraldehyde (7) addition is disclosed, providing the most congested quaternary stereogenic carbon containing succinimide product (8) known to date. Finally, mechanistic insight, via DFT calculations, support a noncovalent assembly of the catalyst components into a bifunctional catalyst, correctly predict two levels of product stereoselectivity, and suggest the origin of the tricomponent catalyst system's exceptionality: an alternative hydrogen bond motif for the donor-acceptor pair than currently suggested for non-assembled catalysts.

摘要

依靠商业可得的催化剂构建块的组装,已经实现了高度立体控制的季碳(全碳取代)形成,具有无与伦比的底物多样性。例如,三组分催化剂体系的原位组装允许α-支链醛与硝基烯烃或马来酰亚胺亲电试剂(迈克尔加成产物)加成,而与α-亚氨基酯加成则得到曼尼希反应产物。观察到非常好的产率,在十八个例子中的十五个中,观察到 96-99%的对映体过量。使用外消旋α-支链醛,可以通过高效的原位动态动力学拆分形成两个连续的(季碳-叔碳)立体中心,立体选择性和对映体过量高(八个例子),解决了马来酰亚胺亲电试剂的一个已知缺点。该方法具有实际价值,仅需 1.2 当量的醛、每种催化剂组分的 5.0 mol%负载量,例如 O-tBu-L-苏氨酸(O-tBu-L-Thr)、磺酰胺、DMAP 或 O-tBu-L-Thr、KOH 和室温反应。作为一个亮点,首次披露了乙基异戊醛(7)的加成,提供了迄今为止已知的最拥挤的季碳立体中心含琥珀酰亚胺产物(8)。最后,通过密度泛函理论(DFT)计算得出的机理见解支持催化剂组分的非共价组装成双功能催化剂,正确预测了两个水平的产物立体选择性,并提出了三组分催化剂体系的特殊性的起源:供体-受体对的氢键模式替代目前建议的非组装催化剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验