Suppr超能文献

利用基于金刚石的菲涅尔波带片实现硬 X 射线自由电子激光脉冲的纳米聚焦。

Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates.

机构信息

Paul Scherrer Institut, CH-5232 Villigen, Switzerland.

出版信息

Sci Rep. 2011;1:57. doi: 10.1038/srep00057. Epub 2011 Aug 8.

Abstract

A growing number of X-ray sources based on the free-electron laser (XFEL) principle are presently under construction or have recently started operation. The intense, ultrashort pulses of these sources will enable new insights in many different fields of science. A key problem is to provide x-ray optical elements capable of collecting the largest possible fraction of the radiation and to focus into the smallest possible focus. As a key step towards this goal, we demonstrate here the first nanofocusing of hard XFEL pulses. We developed diamond based Fresnel zone plates capable of withstanding the full beam of the world's most powerful x-ray laser. Using an imprint technique, we measured the focal spot size, which was limited to 320 nm FWHM by the spectral band width of the source. A peak power density in the focal spot of 4×10(17)W/cm(2) was obtained at 70 fs pulse length.

摘要

目前,越来越多的基于自由电子激光(XFEL)原理的 X 射线源正在建设或最近开始运行。这些光源的高强度、超短脉冲将为许多不同领域的科学研究带来新的见解。一个关键问题是提供能够收集尽可能大的辐射部分并聚焦到尽可能小的焦点的 X 射线光学元件。作为实现这一目标的关键步骤,我们在这里展示了硬 XFEL 脉冲的首次纳米聚焦。我们开发了能够承受世界上最强大的 X 射线激光的完整光束的基于金刚石的菲涅耳波带片。使用压印技术,我们测量了焦点光斑尺寸,其受到光源的光谱带宽限制,半高全宽为 320nm。在 70fs 脉冲长度下,在焦点处获得了 4×10(17)W/cm(2)的峰值功率密度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d2/3216544/d99aed910de9/srep00057-f1.jpg

相似文献

3
Tunable hard x-ray nanofocusing with Fresnel zone plates fabricated using deep etching.
Optica. 2020 May;7(5):410-416. doi: 10.1364/OPTICA.387445.
4
Focusing X-ray free-electron laser pulses using Kirkpatrick-Baez mirrors at the NCI hutch of the PAL-XFEL.
J Synchrotron Radiat. 2018 Jan 1;25(Pt 1):289-292. doi: 10.1107/S1600577517016186.
6
Single-pulse characterization of the focal spot size of X-ray free-electron lasers using coherent diffraction imaging.
J Synchrotron Radiat. 2023 May 1;30(Pt 3):505-513. doi: 10.1107/S1600577523000887. Epub 2023 Mar 22.
7
The High Energy Density Scientific Instrument at the European XFEL.
J Synchrotron Radiat. 2021 Sep 1;28(Pt 5):1393-1416. doi: 10.1107/S1600577521007335. Epub 2021 Aug 23.
8
Ellipsoidal mirror for two-dimensional 100-nm focusing in hard X-ray region.
Sci Rep. 2017 Nov 27;7(1):16408. doi: 10.1038/s41598-017-16468-1.
9
Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1492-7. doi: 10.1073/pnas.1516426113. Epub 2016 Jan 25.
10
Characterizing transmissive diamond gratings as beam splitters for the hard X-ray single-shot spectrometer of the European XFEL.
J Synchrotron Radiat. 2019 May 1;26(Pt 3):708-713. doi: 10.1107/S1600577519003382. Epub 2019 Apr 26.

引用本文的文献

1
Diffractive lenses for neutron techniques.
Sci Rep. 2025 Mar 11;15(1):8408. doi: 10.1038/s41598-025-92329-6.
4
Hard X-ray Fourier transform holography at free electron lasers source.
Sci Rep. 2024 Jul 30;14(1):17480. doi: 10.1038/s41598-024-67972-0.
5
Comparative analysis: CapEx in diamond mining versus diamond growing, based on open data sources and experimental results.
Heliyon. 2024 Jun 10;10(12):e32817. doi: 10.1016/j.heliyon.2024.e32817. eCollection 2024 Jun 30.
6
Non-thermal structural transformation of diamond driven by x-rays.
Struct Dyn. 2023 Oct 27;10(5):054502. doi: 10.1063/4.0000193. eCollection 2023 Sep.
8
Upscaling X-ray nanoimaging to macroscopic specimens.
J Appl Crystallogr. 2021 Feb 19;54(Pt 2):386-401. doi: 10.1107/S1600576721000194. eCollection 2021 Apr 1.
9
Single-pulse phase-contrast imaging at free-electron lasers in the hard X-ray regime.
J Synchrotron Radiat. 2021 Jan 1;28(Pt 1):52-63. doi: 10.1107/S160057752001557X.
10
Pulse-to-pulse wavefront sensing at free-electron lasers using ptychography.
J Appl Crystallogr. 2020 Jul 8;53(Pt 4):949-956. doi: 10.1107/S1600576720006913. eCollection 2020 Aug 1.

本文引用的文献

1
High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating.
J Synchrotron Radiat. 2011 May;18(Pt 3):442-6. doi: 10.1107/S0909049511002366. Epub 2011 Mar 10.
2
Nonlinear atomic response to intense ultrashort x rays.
Phys Rev Lett. 2011 Feb 25;106(8):083002. doi: 10.1103/PhysRevLett.106.083002. Epub 2011 Feb 24.
3
Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime.
Opt Express. 2011 Jan 3;19(1):175-84. doi: 10.1364/OE.19.000175.
4
Spot size characterization of focused non-Gaussian X-ray laser beams.
Opt Express. 2010 Dec 20;18(26):27836-45. doi: 10.1364/OE.18.027836.
5
Femtosecond electronic response of atoms to ultra-intense X-rays.
Nature. 2010 Jul 1;466(7302):56-61. doi: 10.1038/nature09177.
6
Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography.
Nanotechnology. 2010 Jul 16;21(28):285305. doi: 10.1088/0957-4484/21/28/285305. Epub 2010 Jun 18.
7
A diamond nanowire single-photon source.
Nat Nanotechnol. 2010 Mar;5(3):195-9. doi: 10.1038/nnano.2010.6. Epub 2010 Feb 14.
8
Simple technique for measurements of pulsed Gaussian-beam spot sizes.
Opt Lett. 1982 May 1;7(5):196-8. doi: 10.1364/ol.7.000196.
10
Imaging atomic structure and dynamics with ultrafast x-ray scattering.
Science. 2007 Jun 8;316(5830):1444-8. doi: 10.1126/science.1135923.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验