School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA.
Nat Nanotechnol. 2010 Mar;5(3):195-9. doi: 10.1038/nnano.2010.6. Epub 2010 Feb 14.
The development of a robust light source that emits one photon at a time will allow new technologies such as secure communication through quantum cryptography. Devices based on fluorescent dye molecules, quantum dots and carbon nanotubes have been demonstrated, but none has combined a high single-photon flux with stable, room-temperature operation. Luminescent centres in diamond have recently emerged as a stable alternative, and, in the case of nitrogen-vacancy centres, offer spin quantum bits with optical readout. However, these luminescent centres in bulk diamond crystals have the disadvantage of low photon out-coupling. Here, we demonstrate a single-photon source composed of a nitrogen-vacancy centre in a diamond nanowire, which produces ten times greater flux than bulk diamond devices, while using ten times less power. This result enables a new class of devices for photonic and quantum information processing based on nanostructured diamond, and could have a broader impact in nanoelectromechanical systems, sensing and scanning probe microscopy.
我们研发出了一种能够稳定地每次仅发出一个光子的强光源,这将使量子加密等新技术成为可能。基于荧光染料分子、量子点和碳纳米管的设备已经得到了验证,但它们都没有将高单光子通量与稳定的室温运行结合起来。最近,金刚石中的发光中心成为了一种稳定的替代方案,而在氮空位中心的情况下,它们提供了具有光学读出功能的自旋量子位。然而,这些在块状金刚石晶体中的发光中心存在着光子外耦合效率低的缺点。在这里,我们展示了一种由金刚石纳米线中的氮空位中心组成的单光子源,它产生的光通量比块状金刚石器件高出十倍,而所需的功率却降低了十倍。这一结果为基于纳米结构金刚石的光子和量子信息处理开辟了一类新的器件,并可能在纳米机电系统、传感和扫描探针显微镜领域产生更广泛的影响。