Division of Hematology, University of Texas Health Science Center at Houston, Houston, Texas 77225, USA.
Antioxid Redox Signal. 2012 Nov 1;17(9):1246-63. doi: 10.1089/ars.2012.4564. Epub 2012 Apr 10.
Ligand selectivity for dioxygen (O(2)), carbon monoxide (CO), and nitric oxide (NO) is critical for signal transduction and is tailored specifically for each heme-protein sensor. Key NO sensors, such as soluble guanylyl cyclase (sGC), specifically recognized low levels of NO and achieve a total O(2) exclusion. Several mechanisms have been proposed to explain the O(2) insensitivity, including lack of a hydrogen bond donor and negative electrostatic fields to selectively destabilize bound O(2), distal steric hindrance of all bound ligands to the heme iron, and restriction of in-plane movements of the iron atom.
Crystallographic structures of the gas sensors, Thermoanaerobacter tengcongensis heme-nitric oxide/oxygen-binding domain (Tt H-NOX(1)) or Nostoc puntiforme (Ns) H-NOX, and measurements of O(2) binding to site-specific mutants of Tt H-NOX and the truncated β subunit of sGC suggest the need for a H-bonding donor to facilitate O(2) binding.
However, the O(2) insensitivity of full length sGC with a site-specific replacement of isoleucine by a tyrosine on residue 145 and the very slow autooxidation of Ns H-NOX and cytochrome c' suggest that more complex mechanisms have evolved to exclude O(2) but retain high affinity NO binding. A combined graphical analysis of ligand binding data for libraries of heme sensors, globins, and model heme shows that the NO sensors dramatically inhibit the formation of six-coordinated NO, CO, and O(2) complexes by direct distal steric hindrance (cyt c'), proximal constraints of in-plane iron movement (sGC), or combinations of both following a sliding scale rule. High affinity NO binding in H-NOX proteins is achieved by multiple NO binding steps that produce a high affinity five-coordinate NO complex, a mechanism that also prevents NO dioxygenation.
Knowledge advanced by further extensive test of this "sliding scale rule" hypothesis should be valuable in guiding novel designs for heme based sensors.
对于信号转导而言,氧 (O(2))、一氧化碳 (CO) 和一氧化氮 (NO) 的配体选择性至关重要,并且针对每种血红素蛋白传感器进行了专门调整。关键的 NO 传感器,如可溶性鸟苷酸环化酶 (sGC),专门识别低水平的 NO 并实现完全排除 O(2)。已经提出了几种机制来解释 O(2)不敏感性,包括缺乏氢键供体和负静电场以选择性地使结合的 O(2)失稳、所有结合配体对血红素铁的远程空间位阻以及铁原子在平面内运动的限制。
气体传感器的晶体结构,Thermoanaerobacter tengcongensis 血红素-一氧化氮/氧结合域 (Tt H-NOX(1)) 或 Nostoc puntiforme (Ns) H-NOX,以及 Tt H-NOX 和 sGC 截断 β 亚基的特定突变体的 O(2)结合测量表明需要氢键供体来促进 O(2)结合。
然而,全长 sGC 中 I145 残基的异亮氨酸被酪氨酸特异性取代以及 Ns H-NOX 和细胞色素 c' 的非常缓慢的自动氧化表明,已经进化出更复杂的机制来排除 O(2)但保留高亲和力的 NO 结合。血红素传感器、球蛋白和模型血红素的配体结合数据的综合图形分析表明,NO 传感器通过直接的远程空间位阻 (细胞色素 c')、平面内铁运动的近位限制 (sGC) 或两者的组合,显著抑制六配位 NO、CO 和 O(2) 复合物的形成遵循滑动比例规则。H-NOX 蛋白中高亲和力的 NO 结合是通过多个 NO 结合步骤实现的,这些步骤产生了高亲和力的五配位 NO 复合物,这种机制也阻止了 NO 的双加氧作用。
进一步广泛测试这个“滑动比例规则”假说的知识应该有助于指导基于血红素的传感器的新型设计。