Suppr超能文献

可分解正定线性算子表现出约化现象。

Resolvent positive linear operators exhibit the reduction phenomenon.

机构信息

BioSystems, 2605 Lioholo Place, Kihei, HI 96753-7118, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3705-10. doi: 10.1073/pnas.1113833109. Epub 2012 Feb 22.

Abstract

The spectral bound, s(αA + βV), of a combination of a resolvent positive linear operator A and an operator of multiplication V, was shown by Kato to be convex in β ∈ R. Kato's result is shown here to imply, through an elementary "dual convexity" lemma, that s(αA + βV) is also convex in α > 0, and notably, ∂s(αA + βV)/∂α ≤ s(A). Diffusions typically have s(A) ≤ 0, so that for diffusions with spatially heterogeneous growth or decay rates, greater mixing reduces growth. Models of the evolution of dispersal in particular have found this result when A is a Laplacian or second-order elliptic operator, or a nonlocal diffusion operator, implying selection for reduced dispersal. These cases are shown here to be part of a single, broadly general, "reduction" phenomenon.

摘要

Kato 证明了,对于一个正则线性算子 A 和一个乘法算子 V 的组合,其谱边界 s(αA + βV)在 β ∈ R 上是凸的。Kato 的结果通过一个基本的“对偶凸性”引理表明,s(αA + βV)在 α > 0 上也是凸的,特别地,∂s(αA + βV)/∂α ≤ s(A)。扩散过程通常有 s(A) ≤ 0,因此对于空间异质生长或衰减率的扩散过程,更大的混合会减少生长。特别地,在 A 是拉普拉斯算子或二阶椭圆算子或非局部扩散算子的扩散模型中,已经发现了这一结果,这意味着选择减少扩散。这里证明了这些情况是单个广泛的“简化”现象的一部分。

相似文献

1
Resolvent positive linear operators exhibit the reduction phenomenon.可分解正定线性算子表现出约化现象。
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3705-10. doi: 10.1073/pnas.1113833109. Epub 2012 Feb 22.
2
Diploid biological evolution models with general smooth fitness landscapes and recombination.具有一般光滑适应度景观和重组的二倍体生物进化模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061907. doi: 10.1103/PhysRevE.77.061907. Epub 2008 Jun 11.
3
Poissonian steady states: from stationary densities to stationary intensities.泊松稳态:从平稳密度到平稳强度
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041140. doi: 10.1103/PhysRevE.86.041140. Epub 2012 Oct 22.
4
Unified reduction principle for the evolution of mutation, migration, and recombination.统一的突变、迁移和重组进化还原原理。
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2392-E2400. doi: 10.1073/pnas.1619655114. Epub 2017 Mar 6.
5
Physics and Biology (of Chromosomes).物理学与生物学(染色体领域)。
J Mol Biol. 2020 Jan 17;432(2):621-631. doi: 10.1016/j.jmb.2019.11.022. Epub 2019 Dec 20.
6
Covariant genetic dynamics.协变遗传动力学
Evol Comput. 2007 Fall;15(3):291-320. doi: 10.1162/evco.2007.15.3.291.
8
A Not-So-Long Introduction to Computational Molecular Evolution.计算分子进化的简要介绍
Methods Mol Biol. 2019;1910:71-117. doi: 10.1007/978-1-4939-9074-0_3.
9
Differential evolution with ranking-based mutation operators.基于排序的变异算子的差分进化。
IEEE Trans Cybern. 2013 Dec;43(6):2066-81. doi: 10.1109/TCYB.2013.2239988.

引用本文的文献

3
Unified reduction principle for the evolution of mutation, migration, and recombination.统一的突变、迁移和重组进化还原原理。
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2392-E2400. doi: 10.1073/pnas.1619655114. Epub 2017 Mar 6.
4
Toward a unifying framework for evolutionary processes.迈向进化过程的统一框架。
J Theor Biol. 2015 Oct 21;383:28-43. doi: 10.1016/j.jtbi.2015.07.011. Epub 2015 Jul 26.

本文引用的文献

2
Evolutionary stability of ideal free nonlocal dispersal.理想自由非局部扩散的进化稳定性。
J Biol Dyn. 2012;6:395-405. doi: 10.1080/17513758.2011.588341. Epub 2011 Jun 10.
3
On several conjectures from evolution of dispersal.关于扩散进化的几个推测。
J Biol Dyn. 2012;6:117-30. doi: 10.1080/17513758.2010.529169. Epub 2011 Jun 24.
4
An evolutionary reduction principle for mutation rates at multiple Loci.多个基因座突变率的进化简化原理。
Bull Math Biol. 2011 Jun;73(6):1227-70. doi: 10.1007/s11538-010-9557-9. Epub 2010 Aug 25.
5
Evolution of dispersal and the ideal free distribution.扩散的进化与理想自由分布。
Math Biosci Eng. 2010 Jan;7(1):17-36. doi: 10.3934/mbe.2010.7.17.
8
The evolutionary reduction principle for linear variation in genetic transmission.遗传传递中线性变异的进化简约原则。
Bull Math Biol. 2009 Jul;71(5):1264-84. doi: 10.1007/s11538-009-9401-2. Epub 2009 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验