Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologies et Sciences pour le Vivant, CNRS/UJF/INRA/CEA, Grenoble, France.
J Cell Sci. 2012 May 1;125(Pt 9):2134-40. doi: 10.1242/jcs.104901. Epub 2012 Feb 22.
Cell shape in vitro can be directed by geometrically defined micropatterned adhesion substrates. However conventional methods are limited by the fixed micropattern design, which cannot recapitulate the dynamic changes of the cell microenvironment. Here, we manipulate the shape of living cells in real time by using a tightly focused pulsed laser to introduce additional geometrically defined adhesion sites. The sub-micrometer resolution of the laser patterning allowed us to identify the critical distances between cell adhesion sites required for cell shape extension and contraction. This easy-to-handle method allows the precise control of specific actin-based structures that regulate cell architecture. Actin filament bundles or branched meshworks were induced, displaced or removed in response to specific dynamic modifications of the cell adhesion pattern. Isotropic branched actin meshworks could be forced to assemble new stress fibers locally and polarised in response to specific geometrical cues.
细胞的体外形状可以通过具有几何定义的微图案化黏附基底来引导。然而,传统方法受到固定微图案设计的限制,这种设计无法再现细胞微环境的动态变化。在这里,我们通过使用聚焦紧密的脉冲激光来引入额外的具有几何定义的黏附位点,实时操纵活细胞的形状。激光图案化的亚微米分辨率使我们能够确定细胞形状延伸和收缩所需的细胞黏附位点之间的临界距离。这种易于操作的方法允许精确控制特定的基于肌动蛋白的结构,这些结构调节细胞结构。肌动蛋白丝束或分支网格可以响应细胞黏附图案的特定动态修饰而被诱导、移位或去除。各向同性的分支肌动蛋白网格可以在响应特定的几何线索时局部组装新的应力纤维并极化。