Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, University of Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany.
Nature. 2012 Feb 22;482(7386):501-6. doi: 10.1038/nature10829.
Ribosome-driven protein biosynthesis is comprised of four phases: initiation, elongation, termination and recycling. In bacteria, ribosome recycling requires ribosome recycling factor and elongation factor G, and several structures of bacterial recycling complexes have been determined. In the eukaryotic and archaeal kingdoms, however, recycling involves the ABC-type ATPase ABCE1 and little is known about its structural basis. Here we present cryo-electron microscopy reconstructions of eukaryotic and archaeal ribosome recycling complexes containing ABCE1 and the termination factor paralogue Pelota. These structures reveal the overall binding mode of ABCE1 to be similar to canonical translation factors. Moreover, the iron-sulphur cluster domain of ABCE1 interacts with and stabilizes Pelota in a conformation that reaches towards the peptidyl transferase centre, thus explaining how ABCE1 may stimulate peptide-release activity of canonical termination factors. Using the mechanochemical properties of ABCE1, a conserved mechanism in archaea and eukaryotes is suggested that couples translation termination to recycling, and eventually to re-initiation.
起始、延伸、终止和循环。在细菌中,核糖体循环需要核糖体循环因子和延伸因子 G,并且已经确定了几种细菌循环复合物的结构。然而,在真核生物和古菌王国中,循环涉及 ABC 型 ATP 酶 ABCE1,其结构基础知之甚少。在这里,我们展示了包含 ABCE1 和终止因子同源物 Pelota 的真核生物和古菌核糖体循环复合物的冷冻电镜重建。这些结构揭示了 ABCE1 的整体结合模式与典型的翻译因子相似。此外,ABCE1 的铁硫簇结构域与 Pelota 相互作用并稳定其构象,该构象朝向肽基转移酶中心,从而解释了 ABCE1 如何刺激典型终止因子的肽释放活性。利用 ABCE1 的机械化学特性,提出了一种在古菌和真核生物中保守的机制,该机制将翻译终止与循环,最终与再起始偶联。