Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
Nat Struct Mol Biol. 2011 Jun;18(6):715-20. doi: 10.1038/nsmb.2057. Epub 2011 May 29.
No-go decay (NGD) is a mRNA quality-control mechanism in eukaryotic cells that leads to degradation of mRNAs stalled during translational elongation. The key factors triggering NGD are Dom34 and Hbs1. We used cryo-EM to visualize NGD intermediates resulting from binding of the Dom34-Hbs1 complex to stalled ribosomes. At subnanometer resolution, all domains of Dom34 and Hbs1 were identified, allowing the docking of crystal structures and homology models. Moreover, the close structural similarity of Dom34 and Hbs1 to eukaryotic release factors (eRFs) enabled us to propose a model for the ribosome-bound eRF1-eRF3 complex. Collectively, our data provide structural insights into how stalled mRNA is recognized on the ribosome and how the eRF complex can simultaneously recognize stop codons and catalyze peptide release.
无终止衰变(NGD)是真核细胞中的一种 mRNA 质量控制机制,导致在翻译延伸过程中停滞的 mRNAs 降解。触发 NGD 的关键因素是 Dom34 和 Hbs1。我们使用 cryo-EM 可视化了 Dom34-Hbs1 复合物与停滞核糖体结合后产生的 NGD 中间体。在亚纳米分辨率下,鉴定了 Dom34 和 Hbs1 的所有结构域,从而可以对接晶体结构和同源模型。此外,Dom34 和 Hbs1 与真核释放因子(eRFs)的紧密结构相似性使我们能够提出核糖体结合的 eRF1-eRF3 复合物模型。总之,我们的数据提供了结构见解,了解核糖体上如何识别停滞的 mRNA,以及 eRF 复合物如何同时识别终止密码子并催化肽释放。