Suppr超能文献

分泌颗粒膜中的张力通过胞吐融合孔导致广泛的膜转移。

Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore.

作者信息

Monck J R, Alvarez de Toledo G, Fernandez J M

机构信息

Department of Physiology and Biophysics, Mayo Clinic, Rochester, MN 55905.

出版信息

Proc Natl Acad Sci U S A. 1990 Oct;87(20):7804-8. doi: 10.1073/pnas.87.20.7804.

Abstract

For fusion to occur the repulsive forces between two interacting phospholipid bilayers must be reduced. In model systems, this can be achieved by increasing the surface tension of at least one of the membranes. However, there has so far been no evidence that the secretory granule membrane is under tension. We have been studying exocytosis by using the patch-clamp technique to measure the surface area of the plasma membrane of degranulating mast cells. When a secretory granule fuses with the plasma membrane there is a step increase in the cell surface area. Some fusion events are reversible, in which case we have found that the backstep is larger than the initial step, indicating that there is a net decrease in the area of the plasma membrane. The decrease has the following properties: (i) the magnitude is strongly dependent on the lifetime of the fusion event and can be extensive, representing as much as 40% of the initial granule surface area; (ii) the rate of decrease is independent of granule size; and (iii) the decrease is not dependent on swelling of the secretory granule matrix. We conclude that the granule membrane is under tension and that this tension causes a net transfer of membrane from the plasma membrane to the secretory granule, while they are connected by the fusion pore. The high membrane tension in the secretory granule may be the critical stress necessary for bringing about exocytotic fusion.

摘要

为了发生融合,两个相互作用的磷脂双层之间的排斥力必须降低。在模型系统中,这可以通过增加至少一层膜的表面张力来实现。然而,迄今为止,尚无证据表明分泌颗粒膜处于张力状态。我们一直在使用膜片钳技术研究胞吐作用,以测量脱颗粒肥大细胞质膜的表面积。当分泌颗粒与质膜融合时,细胞表面积会有一个阶梯式增加。一些融合事件是可逆的,在这种情况下,我们发现回退步骤大于初始步骤,这表明质膜面积有净减少。这种减少具有以下特性:(i)幅度强烈依赖于融合事件的持续时间,并且可能很大,相当于初始颗粒表面积的40%;(ii)减少速率与颗粒大小无关;(iii)减少不依赖于分泌颗粒基质的肿胀。我们得出结论,颗粒膜处于张力状态,并且这种张力导致膜在通过融合孔连接时从质膜向分泌颗粒的净转移。分泌颗粒中的高膜张力可能是实现胞吐融合所需的关键应力。

相似文献

1
Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore.
Proc Natl Acad Sci U S A. 1990 Oct;87(20):7804-8. doi: 10.1073/pnas.87.20.7804.
2
Is swelling of the secretory granule matrix the force that dilates the exocytotic fusion pore?
Biophys J. 1991 Jan;59(1):39-47. doi: 10.1016/S0006-3495(91)82196-8.
3
The exocytotic fusion pore modeled as a lipidic pore.
Biophys J. 1992 Oct;63(4):1118-32. doi: 10.1016/S0006-3495(92)81679-X.
4
The events leading to secretory granule fusion.
Soc Gen Physiol Ser. 1988;43:333-44.
5
Patch clamp studies of single intact secretory granules.
Biophys J. 1993 Nov;65(5):1844-52. doi: 10.1016/S0006-3495(93)81246-3.
7
New membrane assembly in IgE receptor-mediated exocytosis.
Histochem J. 1990 Apr;22(4):215-26. doi: 10.1007/BF02386008.
8
Patch-clamp measurements reveal multimodal distribution of granule sizes in rat mast cells.
J Cell Biol. 1990 Apr;110(4):1033-9. doi: 10.1083/jcb.110.4.1033.
9
Exocytotic fusion pores exhibit semi-stable states.
J Membr Biol. 1993 Apr;133(1):61-75. doi: 10.1007/BF00231878.

引用本文的文献

2
Ca-dependent vesicular and non-vesicular lipid transfer controls hypoosmotic plasma membrane expansion.
bioRxiv. 2024 Oct 21:2024.10.20.619261. doi: 10.1101/2024.10.20.619261.
3
Coordination of force-generating actin-based modules stabilizes and remodels membranes in vivo.
J Cell Biol. 2024 Nov 4;223(11). doi: 10.1083/jcb.202401091. Epub 2024 Aug 22.
4
Membrane transformations of fusion and budding.
Nat Commun. 2024 Jan 2;15(1):21. doi: 10.1038/s41467-023-44539-7.
5
Illuminating membrane structural dynamics of fusion and endocytosis with advanced light imaging techniques.
Biochem Soc Trans. 2022 Aug 31;50(4):1157-1167. doi: 10.1042/BST20210263.
6
Fusion Pore Expansion and Contraction during Catecholamine Release from Endocrine Cells.
Biophys J. 2020 Jul 7;119(1):219-231. doi: 10.1016/j.bpj.2020.06.001. Epub 2020 Jun 8.
7
Vesicle Shrinking and Enlargement Play Opposing Roles in the Release of Exocytotic Contents.
Cell Rep. 2020 Jan 14;30(2):421-431.e7. doi: 10.1016/j.celrep.2019.12.044.
8
Visualization of expanding fusion pores in secretory cells.
J Gen Physiol. 2018 Dec 3;150(12):1640-1646. doi: 10.1085/jgp.201812186. Epub 2018 Nov 23.
9
Toward a unified picture of the exocytotic fusion pore.
FEBS Lett. 2018 Nov;592(21):3563-3585. doi: 10.1002/1873-3468.13270. Epub 2018 Oct 26.

本文引用的文献

1
Forces between surfaces in liquids.
Science. 1988 Aug 12;241(4867):795-800. doi: 10.1126/science.241.4867.795.
2
Arrest of membrane fusion events in mast cells by quick-freezing.
J Cell Biol. 1980 Aug;86(2):666-74. doi: 10.1083/jcb.86.2.666.
3
Correlation between membrane expansion and temperature-induced membrane fusion.
Biochim Biophys Acta. 1981 Apr 6;642(2):365-74. doi: 10.1016/0005-2736(81)90452-1.
4
Voltage-dependent lipid flip-flop induced by alamethicin.
Biophys J. 1981 Mar;33(3):373-81. doi: 10.1016/S0006-3495(81)84901-6.
5
A mechanism of divalent ion-induced phosphatidylserine membrane fusion.
Biochim Biophys Acta. 1982 Jul 14;689(1):1-11. doi: 10.1016/0005-2736(82)90182-1.
9
Osmotic forces in artificially induced cell fusion.
Biochim Biophys Acta. 1986 Jun 13;858(1):206-16. doi: 10.1016/0005-2736(86)90308-1.
10
Inhibition of secretory granule discharge during exocytosis in sea urchin eggs by polymer solutions.
J Physiol. 1987 Aug;389:527-39. doi: 10.1113/jphysiol.1987.sp016670.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验