Department of Biochemistry, Uniformed Services University School of Medicine, Bethesda, Maryland 20814, United States.
Biochemistry. 2012 Apr 3;51(13):2852-66. doi: 10.1021/bi201479k. Epub 2012 Mar 22.
The human multidrug transporter P-glycoprotein (Pgp or ABCB1) sets up pharmacological barriers to many clinically important drugs, a therapeutic remedy for which has yet to be formulated. For the rational design of mechanism-based inhibitors (or modulators), it is necessary to map the potential sites for modulator interaction and understand their modes of communication with the other functional domains of Pgp. In this study, combining directed mutagenesis with homology modeling, we provide evidence of two modulator-specific sites at the lipid protein interface of Pgp. Targeting 21 variant positions in the COOH-terminal transmembrane (TM) regions, we find residues M948 (in TM11) and F983, M986, V988, and Q990 (all four in TM12) critically involved in substrate-site modulation by a thioxanthene-based allosteric modulator cis-(Z)-flupentixol. Interestingly, for ATP-site modulation by the same modulator, only two (M948 and Q990) of those four residues appear indispensable, together with two additional residues, T837 and I864 in TM9 and TM10, respectively, suggesting independent modes of communication linking the allosteric site with the substrate binding and ATPase domains. None of the seven residues identified prove to be critical for modulation of the substrate or ATP sites by Pgp modulators that are transported by the pump, such as cyclosporin A or verapamil, indicating their specificity for cis-(Z)-flupentixol. On the other hand, ATP-site modulation by verapamil proves to be highly sensitive to replacement at positions F716 (in TM7) and I765 (in TM8), and to a more moderate extent at I764 and L772 (both in TM8). Homology modeling based on the known crystal structures of the bacterial multidrug transporter SAV1866 and the mouse Pgp homologue maps the identified residues primarily at the lipid-protein interface of Pgp, in two spatially distinct modulator-specific clusters. The two modulatory sites demonstrate negative synergism in influencing ATP hydrolysis, consolidating their spatial distinctness. Because Pgp is known to recruit drug molecules directly from the lipid bilayer, identification of modulatory sites at the lipid-protein interface and at the same time outside the conventional central drug binding cavity is mechanistically revealing.
人多药耐药蛋白 P-糖蛋白(Pgp 或 ABCB1)为许多临床上重要的药物设置了药理学屏障,目前尚未制定出治疗这种情况的方法。为了合理设计基于机制的抑制剂(或调节剂),有必要绘制调节剂相互作用的潜在位点图,并了解它们与 Pgp 其他功能域的交流方式。在这项研究中,我们结合定向诱变和同源建模,提供了 Pgp 脂质蛋白界面上两个调节剂特异性位点的证据。针对 COOH 末端跨膜(TM)区域的 21 个变异位置,我们发现残基 M948(在 TM11 中)和 F983、M986、V988 和 Q990(全部在 TM12 中)在基于噻吨的变构调节剂 cis-(Z)-氟奋乃静对底物结合位点的调节中起着关键作用。有趣的是,对于同一调节剂对 ATP 结合位点的调节,只有这四个残基中的两个(M948 和 Q990)与另外两个残基(TM9 和 TM10 中的 T837 和 I864)一起是必不可少的,表明变构位点与底物结合和 ATP 酶结构域之间存在独立的通讯模式。在鉴定的七个残基中,没有一个对 Pgp 调节剂(如环孢菌素 A 或维拉帕米)调节底物或 ATP 结合位点是至关重要的,这表明它们对 cis-(Z)-氟奋乃静具有特异性。另一方面,维拉帕米对 ATP 结合位点的调节对 TM7 中的 F716 和 TM8 中的 I765 的取代高度敏感,对 TM8 中的 I764 和 L772 的取代则更为适度。基于已知的细菌多药转运蛋白 SAV1866 和小鼠 Pgp 同源物的晶体结构的同源建模将鉴定的残基映射到 Pgp 的脂质-蛋白界面上,在两个空间上不同的调节剂特异性簇中。这两个调节位点在影响 ATP 水解方面表现出负协同作用,巩固了它们的空间差异性。由于 Pgp 已知直接从脂质双层募集药物分子,因此在脂质-蛋白界面上同时在传统的中央药物结合腔之外鉴定调节位点在机制上具有揭示性。