Suppr超能文献

控制来自脱硫孤菌的超氧化物还原酶中铁过氧化物中间物的进化。赖氨酸 48 参与质子化。

Control of the evolution of iron peroxide intermediate in superoxide reductase from Desulfoarculus baarsii. Involvement of lysine 48 in protonation.

机构信息

CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux, F-38054 Grenoble, France.

出版信息

J Am Chem Soc. 2012 Mar 21;134(11):5120-30. doi: 10.1021/ja209297n. Epub 2012 Mar 7.

Abstract

Superoxide reductase is a nonheme iron metalloenzyme that detoxifies superoxide anion radicals O(2)(•-) in some microorganisms. Its catalytic mechanism was previously proposed to involve a single ferric iron (hydro)peroxo intermediate, which is protonated to form the reaction product H(2)O(2). Here, we show by pulse radiolysis that the mutation of the well-conserved lysine 48 into isoleucine in the SOR from Desulfoarculus baarsii dramatically affects its reaction with O(2)(•-). Although the first reaction intermediate and its decay are not affected by the mutation, H(2)O(2) is no longer the reaction product. In addition, in contrast to the wild-type SOR, the lysine mutant catalyzes a two-electron oxidation of an olefin into epoxide in the presence of H(2)O(2), suggesting the formation of iron-oxo intermediate species in this mutant. In agreement with the recent X-ray structures of the peroxide intermediates trapped in a SOR crystal, these data support the involvement of lysine 48 in the specific protonation of the proximal oxygen of the peroxide intermediate to generate H(2)O(2), thus avoiding formation of iron-oxo species, as is observed in cytochrome P450. In addition, we proposed that the first reaction intermediate observed by pulse radiolysis is a ferrous-iron superoxo species, in agreement with TD-DFT calculations of the absorption spectrum of this intermediate. A new reaction scheme for the catalytical mechanism of SOR with O(2)(•-) is presented in which ferrous iron-superoxo and ferric hydroperoxide species are reaction intermediates, and the lysine 48 plays a key role in the control of the evolution of iron peroxide intermediate to form H(2)O(2).

摘要

超氧化物还原酶是一种非血红素铁金属酶,可在某些微生物中清除超氧阴离子自由基 O(2)(•-)。其催化机制先前被提出涉及单个三价铁 (氢)过氧中间物,该中间物质子化形成反应产物 H(2)O(2)。在这里,我们通过脉冲辐射法表明,来自 Desulfoarculus baarsii 的 SOR 中高度保守的赖氨酸 48 突变为异亮氨酸会极大地影响其与 O(2)(•-)的反应。尽管突变并未影响第一个反应中间物及其衰减,但 H(2)O(2)不再是反应产物。此外,与野生型 SOR 相比,赖氨酸突变体在存在 H(2)O(2)的情况下催化烯烃的两电子氧化生成环氧化物,表明该突变体中形成了铁氧中间物物种。与最近在 SOR 晶体中捕获的过氧化物中间物的 X 射线结构一致,这些数据支持赖氨酸 48 参与过氧化物中间物的特定质子化,从而生成 H(2)O(2),从而避免形成铁氧物种,如在细胞色素 P450 中观察到的那样。此外,我们提出通过脉冲辐射法观察到的第一个反应中间物是亚铁-超氧物种,这与该中间物吸收光谱的 TD-DFT 计算一致。提出了一种新的 SOR 与 O(2)(•-)催化机制的反应方案,其中亚铁铁-超氧和三价铁过氧化物物种是反应中间物,赖氨酸 48 在控制铁过氧化物中间物的演化形成 H(2)O(2)方面起着关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验