Laboratoire de Chimie et Biologie des Métaux, CEA, iRTSV, 17 avenue des Martyrs, 38054, Grenoble, France.
J Biol Inorg Chem. 2013 Oct;18(7):815-30. doi: 10.1007/s00775-013-1025-1. Epub 2013 Aug 6.
Superoxide reductase (SOR) is a non-heme iron metalloenzyme that detoxifies superoxide radical in microorganisms. Its active site consists of an unusual non-heme Fe(2+) center in a [His4Cys1] square pyramidal pentacoordination, with the axial cysteine ligand proposed to be an essential feature in catalysis. Two NH peptide groups from isoleucine 118 and histidine 119 establish hydrogen bonds involving the sulfur ligand (Desulfoarculus baarsii SOR numbering). To investigate the catalytic role of these hydrogen bonds, the isoleucine 118 residue of the SOR from Desulfoarculus baarsii was mutated into alanine, aspartate, or serine residues. Resonance Raman spectroscopy showed that the mutations specifically induced an increase of the strength of the Fe(3+)-S(Cys) and S-Cβ(Cys) bonds as well as a change in conformation of the cysteinyl side chain, which was associated with the alteration of the NH hydrogen bonding involving the sulfur ligand. The effects of the isoleucine mutations on the reactivity of SOR with O2 (•-) were investigated by pulse radiolysis. These studies showed that the mutations induced a specific increase of the pK a of the first reaction intermediate, recently proposed to be an Fe(2+)-O2 (•-) species. These data were supported by density functional theory calculations conducted on three models of the Fe(2+)-O2 (•-) intermediate, with one, two, or no hydrogen bonds involving the sulfur ligand. Our results demonstrated that the hydrogen bonds between the NH (peptide) and the cysteine ligand tightly control the rate of protonation of the Fe(2+)-O2 (•-) reaction intermediate to form an Fe(3+)-OOH species.
超氧化物还原酶(SOR)是一种非血红素铁金属酶,可在微生物中解毒超氧自由基。其活性位点由一个不寻常的非血红素 Fe(2+)中心组成,位于[His4Cys1]四方锥五角配位中,轴向半胱氨酸配体被认为是催化的重要特征。来自异亮氨酸 118 和组氨酸 119 的两个 NH 肽基团建立涉及硫配体的氢键(Desulfoarculus baarsii SOR 编号)。为了研究这些氢键的催化作用,将 Desulfoarculus baarsii SOR 中的异亮氨酸 118 残基突变为丙氨酸、天冬氨酸或丝氨酸残基。共振拉曼光谱表明,突变特异性地增加了 Fe(3+)-S(Cys)和 S-Cβ(Cys)键的强度以及半胱氨酸侧链的构象变化,这与涉及硫配体的 NH 氢键的改变有关。通过脉冲辐射解研究了异亮氨酸突变对 SOR 与 O2(•-)反应性的影响。这些研究表明,突变诱导第一反应中间体的 pK a 特异性增加,最近提出该中间体为 Fe(2+)-O2(•-)物种。密度泛函理论计算对三个 Fe(2+)-O2(•-)中间模型进行了支持,其中一个、两个或没有氢键涉及硫配体。我们的结果表明,NH(肽)和半胱氨酸配体之间的氢键紧密控制质子化 Fe(2+)-O2(•-)反应中间体形成 Fe(3+)-OOH 物种的速率。