Suppr超能文献

肠道微生物群诱导的活性氧产生:药物治疗意义。

Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications.

机构信息

Emory University School of Medicine, Atlanta, GA 30322, USA.

出版信息

Curr Med Chem. 2012;19(10):1519-29. doi: 10.2174/092986712799828283.

Abstract

The resident prokaryotic microbiota of the mammalian intestine influences diverse homeostatic functions, including regulation of cellular growth, maintenance of barrier function, and modulation of immune responses. However, it is unknown how commensal prokaryotic organisms mechanistically influence eukaryotic signaling networks. Recent data has demonstrated that gut epithelia contacted by enteric commensal bacteria rapidly generate reactive oxygen species (ROS). While the induced generation of ROS via stimulation of formyl peptide receptors is a cardinal feature of the cellular response of phagocytes to pathogenic or commensal bacteria, evidence is accumulating that ROS are also similarly elicited in other cell types, including intestinal epithelia, in response to microbial signals. Additionally, ROS have been shown to serve as critical second messengers in multiple signal transduction pathways stimulated by proinflammatory cytokines and growth factors. This physiologically-generated ROS is known to participate in cellular signaling via the rapid and transient oxidative inactivation of a defined class of sensor proteins bearing oxidant-sensitive thiol groups. These proteins include tyrosine phosphatases that serve as regulators of MAP kinase pathways, cytoskeletal dynamics, as well as components involved in control of ubiquitination-mediated NF-κB activation. Consistently, microbial-elicited ROS has been shown to mediate increased cellular proliferation and motility and to modulate innate immune signaling. These results demonstrate how enteric microbiota influence regulatory networks of the mammalian intestinal epithelia. We hypothesize that many of the known effects of the normal microbiota on intestinal physiology, and potential beneficial effects of candidate probiotic bacteria, may be at least partially mediated by this ROS-dependent mechanism.

摘要

哺乳动物肠道内的常驻原核微生物群落影响多种体内平衡功能,包括细胞生长的调节、屏障功能的维持和免疫反应的调节。然而,目前尚不清楚共生原核生物如何通过影响真核信号网络来发挥作用。最近的数据表明,与肠道共生菌接触的肠道上皮细胞会迅速产生活性氧(ROS)。虽然通过刺激甲酰肽受体诱导 ROS 的产生是吞噬细胞对病原体或共生菌的细胞反应的一个主要特征,但越来越多的证据表明,ROS 也会在其他细胞类型中被微生物信号诱导产生,包括肠道上皮细胞。此外,ROS 已被证明作为多种信号转导途径的关键第二信使,这些信号转导途径受促炎细胞因子和生长因子的刺激。这种生理性产生的 ROS 通过迅速和瞬时氧化失活具有氧化敏感巯基的特定类别的传感器蛋白参与细胞信号转导。这些蛋白质包括作为 MAP 激酶途径、细胞骨架动力学以及参与控制泛素化介导的 NF-κB 激活的组成部分的调节性酪氨酸磷酸酶。一致地,微生物诱导的 ROS 已被证明介导细胞增殖和运动性增加,并调节先天免疫信号。这些结果表明肠道微生物群如何影响哺乳动物肠道上皮的调节网络。我们假设,正常微生物群对肠道生理学的许多已知影响,以及候选益生菌的潜在有益影响,可能至少部分是通过这种 ROS 依赖的机制介导的。

相似文献

1
Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications.
Curr Med Chem. 2012;19(10):1519-29. doi: 10.2174/092986712799828283.
2
Redox signaling mediated by the gut microbiota.
Free Radic Res. 2013 Nov;47(11):950-7. doi: 10.3109/10715762.2013.833331. Epub 2013 Oct 4.
3
Redox signaling mediated by the gut microbiota.
Free Radic Biol Med. 2017 Apr;105:41-47. doi: 10.1016/j.freeradbiomed.2016.10.495. Epub 2016 Oct 29.
4
Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species.
EMBO J. 2007 Oct 31;26(21):4457-66. doi: 10.1038/sj.emboj.7601867. Epub 2007 Oct 4.
7
Commensal-epithelial signaling mediated via formyl peptide receptors.
Am J Pathol. 2010 Dec;177(6):2782-90. doi: 10.2353/ajpath.2010.100529. Epub 2010 Oct 29.
8
Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1.
Mucosal Immunol. 2014 May;7(3):645-55. doi: 10.1038/mi.2013.84. Epub 2013 Nov 6.
9
Redox signaling mediates symbiosis between the gut microbiota and the intestine.
Gut Microbes. 2014 Mar-Apr;5(2):250-3. doi: 10.4161/gmic.27917. Epub 2014 Jan 23.
10
The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium.
Mucosal Immunol. 2015 Mar;8(2):372-9. doi: 10.1038/mi.2014.74. Epub 2014 Aug 27.

引用本文的文献

3
Protein-responsive gut hormone tachykinin directs food choice and impacts lifespan.
Nat Metab. 2025 Apr 14. doi: 10.1038/s42255-025-01267-0.
4
Defense arsenal of the strict anaerobe against reactive oxygen species encountered during its infection cycle.
mBio. 2025 Apr 9;16(4):e0375324. doi: 10.1128/mbio.03753-24. Epub 2025 Mar 20.
6
Advances in 16S rRNA-Based Microbial Biomarkers for Gastric Cancer Diagnosis and Prognosis.
Microb Biotechnol. 2025 Feb;18(2):e70115. doi: 10.1111/1751-7915.70115.
7
Gut redox and microbiome: charting the roadmap to T-cell regulation.
Front Immunol. 2024 Aug 21;15:1387903. doi: 10.3389/fimmu.2024.1387903. eCollection 2024.
8
Molecular Mechanisms of Intestinal Protection by 23017 against C7731-Induced Damage: Role of Nrf2.
Microorganisms. 2024 Jun 1;12(6):1135. doi: 10.3390/microorganisms12061135.
9

本文引用的文献

2
Transcriptional regulation of xenobiotic detoxification in Drosophila.
Genes Dev. 2011 Sep 1;25(17):1796-806. doi: 10.1101/gad.17280911.
3
Hormetics: dietary triggers of an adaptive stress response.
Pharm Res. 2011 Nov;28(11):2680-94. doi: 10.1007/s11095-011-0551-1. Epub 2011 Aug 5.
4
Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis.
Am J Respir Crit Care Med. 2011 Oct 15;184(8):928-38. doi: 10.1164/rccm.201102-0271OC. Epub 2011 Jul 28.
5
Beneficial role of Nrf2 in regulating NADPH generation and consumption.
Toxicol Sci. 2011 Oct;123(2):590-600. doi: 10.1093/toxsci/kfr183. Epub 2011 Jul 20.
7
Acceleration of UVB-induced photoageing in nrf2 gene-deficient mice.
Exp Dermatol. 2011 Aug;20(8):664-8. doi: 10.1111/j.1600-0625.2011.01292.x. Epub 2011 May 16.
8
Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases.
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8803-8. doi: 10.1073/pnas.1010042108. Epub 2011 May 9.
9
Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression.
Am J Physiol Gastrointest Liver Physiol. 2011 Jul;301(1):G39-49. doi: 10.1152/ajpgi.00509.2010. Epub 2011 Mar 31.
10
The cytoprotective role of the Keap1-Nrf2 pathway.
Arch Toxicol. 2011 Apr;85(4):241-72. doi: 10.1007/s00204-011-0674-5. Epub 2011 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验