Suppr超能文献

肠道微生物群介导的氧化还原信号。

Redox signaling mediated by the gut microbiota.

机构信息

Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA.

出版信息

Free Radic Res. 2013 Nov;47(11):950-7. doi: 10.3109/10715762.2013.833331. Epub 2013 Oct 4.

Abstract

The microbiota that occupies the mammalian intestine can modulate a range of physiological functions, including control over immune responses, epithelial barrier function, and cellular proliferation. While commensal prokaryotic organisms are well known to stimulate inflammatory signaling networks, less is known about control over homeostatic pathways. Recent work has shown that gut epithelia contacted by enteric commensal bacteria rapidly generate reactive oxygen species (ROS). While the induced production of ROS in professional phagocytes via stimulation of formyl peptide receptors (FPRs) and activation of NADPH oxidase 2 (Nox2) is a well-studied process, ROS are also similarly elicited in other cell types, including intestinal epithelia, in response to microbial signals via FPRs and the epithelial NADPH oxidase 1 (Nox1). ROS generated by Nox enzymes have been shown to function as critical second messengers in multiple signal transduction pathways via the rapid and transient oxidative inactivation of a distinct class of sensor proteins bearing oxidant-sensitive thiol groups. These redox-sensitive proteins include tyrosine phosphatases that serve as regulators of MAP kinase pathways, focal adhesion kinase, as well as components involved in NF-κB activation. As microbe-elicited ROS has been shown to stimulate cellular proliferation and motility, and to modulate innate immune signaling, we hypothesize that many of the established effects of the normal microbiota on intestinal physiology may be at least partially mediated by this ROS-dependent mechanism.

摘要

栖息在哺乳动物肠道内的微生物群落可以调节多种生理功能,包括控制免疫反应、上皮屏障功能和细胞增殖。虽然人们熟知共生原核生物可以刺激炎症信号网络,但对于其对体内平衡途径的控制知之甚少。最近的研究表明,肠道上皮细胞与肠道共生菌接触后会迅速产生活性氧(ROS)。虽然通过刺激甲酰肽受体(FPRs)和激活 NADPH 氧化酶 2(Nox2)在专业吞噬细胞中诱导 ROS 的产生是一个研究充分的过程,但 ROS 也可以通过 FPRs 和上皮 NADPH 氧化酶 1(Nox1)在其他细胞类型(包括肠道上皮细胞)中被微生物信号类似地诱导。Nox 酶产生的 ROS 已被证明作为关键的第二信使,在多种信号转导途径中发挥作用,其通过迅速和瞬时氧化失活具有氧化敏感巯基的特定类别的传感器蛋白。这些氧化还原敏感蛋白包括作为 MAP 激酶途径调节剂的酪氨酸磷酸酶、粘着斑激酶以及参与 NF-κB 激活的成分。由于微生物诱导的 ROS 已被证明可以刺激细胞增殖和运动,并调节先天免疫信号,我们假设正常微生物群对肠道生理学的许多既定影响至少部分是通过这种 ROS 依赖的机制介导的。

相似文献

1
Redox signaling mediated by the gut microbiota.
Free Radic Res. 2013 Nov;47(11):950-7. doi: 10.3109/10715762.2013.833331. Epub 2013 Oct 4.
2
Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications.
Curr Med Chem. 2012;19(10):1519-29. doi: 10.2174/092986712799828283.
3
Redox signaling mediated by the gut microbiota.
Free Radic Biol Med. 2017 Apr;105:41-47. doi: 10.1016/j.freeradbiomed.2016.10.495. Epub 2016 Oct 29.
4
Redox signaling mediates symbiosis between the gut microbiota and the intestine.
Gut Microbes. 2014 Mar-Apr;5(2):250-3. doi: 10.4161/gmic.27917. Epub 2014 Jan 23.
5
Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1.
Mucosal Immunol. 2014 May;7(3):645-55. doi: 10.1038/mi.2013.84. Epub 2013 Nov 6.
7
Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair.
J Clin Invest. 2013 Jan;123(1):443-54. doi: 10.1172/JCI65831. Epub 2012 Dec 17.
9
Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species.
EMBO J. 2013 Nov 27;32(23):3017-28. doi: 10.1038/emboj.2013.224. Epub 2013 Oct 18.

引用本文的文献

1
Dual-Targeting Mn@CeO Nanozyme-Modified Probiotic Hydrogel Microspheres Reshape Gut Homeostasis in Inflammatory Bowel Disease.
ACS Nano. 2025 Sep 9;19(35):31619-31642. doi: 10.1021/acsnano.5c08999. Epub 2025 Aug 25.
2
Engineered Probiotic-Based Biomaterials for Inflammatory Bowel Disease Treatment.
Theranostics. 2025 Feb 18;15(8):3289-3315. doi: 10.7150/thno.103983. eCollection 2025.
3
Exploring the Effects of Probiotic Treatment on Urinary and Serum Metabolic Profiles in Healthy Individuals.
J Proteome Res. 2023 Dec 1;22(12):3866-3878. doi: 10.1021/acs.jproteome.3c00548. Epub 2023 Nov 16.
4
Gut microbial genetic variation modulates host lifespan, sleep, and motor performance.
ISME J. 2023 Oct;17(10):1733-1740. doi: 10.1038/s41396-023-01478-x. Epub 2023 Aug 7.
6
The Influence of Gut Microbiota on Oxidative Stress and the Immune System.
Biomedicines. 2023 May 8;11(5):1388. doi: 10.3390/biomedicines11051388.
7
Mechanisms of Oxidative Stress in Metabolic Syndrome.
Int J Mol Sci. 2023 Apr 26;24(9):7898. doi: 10.3390/ijms24097898.
8
The Crosstalk between Microbiome and Mitochondrial Homeostasis in Neurodegeneration.
Cells. 2023 Jan 28;12(3):429. doi: 10.3390/cells12030429.
9
Implication of gut microbes and its metabolites in colorectal cancer.
J Cancer Res Clin Oncol. 2023 Jan;149(1):441-465. doi: 10.1007/s00432-022-04422-2. Epub 2022 Dec 27.

本文引用的文献

1
The Influence of the Gut Microbiota on Host Physiology: In Pursuit of Mechanisms.
Yale J Biol Med. 2016 Sep 30;89(3):285-297. eCollection 2016 Sep.
2
The microenvironment of injured murine gut elicits a local pro-restitutive microbiota.
Nat Microbiol. 2016 Jan 27;1:15021. doi: 10.1038/nmicrobiol.2015.21.
3
Detecting Reactive Oxygen Species Generation and Stem Cell Proliferation in the Drosophila Intestine.
Methods Mol Biol. 2016;1422:103-13. doi: 10.1007/978-1-4939-3603-8_10.
4
Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics.
J Clin Invest. 2016 Jun 1;126(6):2049-63. doi: 10.1172/JCI86062. Epub 2016 Apr 25.
6
Nrf2 signaling and redox homeostasis in the aging heart: A potential target to prevent cardiovascular diseases?
Ageing Res Rev. 2016 Mar;26:81-95. doi: 10.1016/j.arr.2015.12.005. Epub 2015 Dec 28.
7
The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance.
Oxid Med Cell Longev. 2016;2016:1958174. doi: 10.1155/2016/1958174. Epub 2015 Nov 30.
8
Redox Modulating NRF2: A Potential Mediator of Cancer Stem Cell Resistance.
Oxid Med Cell Longev. 2016;2016:2428153. doi: 10.1155/2016/2428153. Epub 2015 Nov 22.
9
MicroRNAs: New players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways.
Curr Pharmacol Rep. 2015 Feb;1(1):21-30. doi: 10.1007/s40495-014-0013-7. Epub 2015 Jan 11.
10
Dysregulation of the Keap1-Nrf2 pathway in cancer.
Biochem Soc Trans. 2015 Aug;43(4):645-9. doi: 10.1042/BST20150048. Epub 2015 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验