Suppr超能文献

肠共生菌通过依赖于甲酰肽受体的双特异性磷酸酶 3 的氧化还原调节诱导细胞外信号调节激酶途径信号。

Enteric commensal bacteria induce extracellular signal-regulated kinase pathway signaling via formyl peptide receptor-dependent redox modulation of dual specific phosphatase 3.

机构信息

Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322.

Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322.

出版信息

J Biol Chem. 2011 Nov 4;286(44):38448-38455. doi: 10.1074/jbc.M111.268938. Epub 2011 Sep 15.

Abstract

The normal microbial occupants of the mammalian intestine are crucial for maintaining gut homeostasis, yet the mechanisms by which intestinal cells perceive and respond to the microbiota are largely unknown. Intestinal epithelial contact with commensal bacteria and/or their products has been shown to activate noninflammatory signaling pathways, such as extracellular signal-related kinase (ERK), thus influencing homeostatic processes. We previously demonstrated that commensal bacteria stimulate ERK pathway activity via interaction with formyl peptide receptors (FPRs). In the current study, we expand on these findings and show that commensal bacteria initiate ERK signaling through rapid FPR-dependent reactive oxygen species (ROS) generation and subsequent modulation of MAP kinase phosphatase redox status. ROS generation induced by the commensal bacteria Lactobacillus rhamnosus GG and the FPR peptide ligand, N-formyl-Met-Leu-Phe, was abolished in the presence of selective inhibitors for G protein-coupled signaling and FPR ligand interaction. In addition, pretreatment of cells with inhibitors of ROS generation attenuated commensal bacteria-induced ERK signaling, indicating that ROS generation is required for ERK pathway activation. Bacterial colonization also led to oxidative inactivation of the redox-sensitive and ERK-specific phosphatase, DUSP3/VHR, and consequent stimulation of ERK pathway signaling. Together, these data demonstrate that commensal bacteria and their products activate ROS signaling in an FPR-dependent manner and define a mechanism by which cellular ROS influences the ERK pathway through a redox-sensitive regulatory circuit.

摘要

哺乳动物肠道内的正常微生物菌群对于维持肠道内环境稳态至关重要,但肠道细胞感知和响应微生物菌群的机制在很大程度上尚未可知。肠道上皮细胞与共生菌及其产物的接触已被证明能够激活非炎症信号通路,如细胞外信号相关激酶(ERK),从而影响稳态过程。我们之前的研究表明,共生菌通过与甲酰肽受体(FPRs)相互作用刺激 ERK 通路的活性。在本研究中,我们进一步扩展了这些发现,并表明共生菌通过快速的 FPR 依赖性活性氧(ROS)生成和随后调节 MAP 激酶磷酸酶氧化还原状态来启动 ERK 信号。在存在选择性 G 蛋白偶联信号转导和 FPR 配体相互作用抑制剂的情况下,共生菌 Lactobacillus rhamnosus GG 和 FPR 配体 N-甲酰基-Met-Leu-Phe 诱导的 ROS 生成被消除。此外,细胞中 ROS 生成抑制剂的预处理减弱了共生菌诱导的 ERK 信号,表明 ROS 生成是 ERK 通路激活所必需的。细菌定植也导致氧化还原敏感的 ERK 特异性磷酸酶 DUSP3/VHR 的失活,从而刺激 ERK 通路信号。总之,这些数据表明,共生菌及其产物以 FPR 依赖的方式激活 ROS 信号,并定义了一种通过细胞 ROS 通过氧化还原敏感的调节回路影响 ERK 通路的机制。

相似文献

2
Commensal-epithelial signaling mediated via formyl peptide receptors.
Am J Pathol. 2010 Dec;177(6):2782-90. doi: 10.2353/ajpath.2010.100529. Epub 2010 Oct 29.
3
Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1.
Mucosal Immunol. 2014 May;7(3):645-55. doi: 10.1038/mi.2013.84. Epub 2013 Nov 6.
4
Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications.
Curr Med Chem. 2012;19(10):1519-29. doi: 10.2174/092986712799828283.
5
Epithelial adhesion mediated by pilin SpaC is required for Lactobacillus rhamnosus GG-induced cellular responses.
Appl Environ Microbiol. 2014 Aug;80(16):5068-77. doi: 10.1128/AEM.01039-14. Epub 2014 Jun 13.
6
Redox signaling mediated by the gut microbiota.
Free Radic Biol Med. 2017 Apr;105:41-47. doi: 10.1016/j.freeradbiomed.2016.10.495. Epub 2016 Oct 29.
7
Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species.
EMBO J. 2007 Oct 31;26(21):4457-66. doi: 10.1038/sj.emboj.7601867. Epub 2007 Oct 4.
8
Redox signaling mediated by the gut microbiota.
Free Radic Res. 2013 Nov;47(11):950-7. doi: 10.3109/10715762.2013.833331. Epub 2013 Oct 4.
9
Dexras1/AGS-1 inhibits signal transduction from the Gi-coupled formyl peptide receptor to Erk-1/2 MAP kinases.
J Biol Chem. 2002 Mar 29;277(13):10876-82. doi: 10.1074/jbc.M110397200. Epub 2001 Dec 21.
10
Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases.
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8803-8. doi: 10.1073/pnas.1010042108. Epub 2011 May 9.

引用本文的文献

1
Eosinophils in inflammatory bowel disease pathogenesis: an ROS-centric view.
Front Allergy. 2025 Aug 8;6:1608202. doi: 10.3389/falgy.2025.1608202. eCollection 2025.
2
Hydrogen Peroxide: A Ubiquitous Component of Beverages and Food.
Int J Mol Sci. 2025 Apr 5;26(7):3397. doi: 10.3390/ijms26073397.
3
Single-cell view into the role of microbiota shaping host immunity in the larynx.
iScience. 2024 May 31;27(6):110156. doi: 10.1016/j.isci.2024.110156. eCollection 2024 Jun 21.
6
Combination of Ethacrynic Acid and ATRA Triggers Differentiation and/or Apoptosis of Acute Myeloid Leukemia Cells through ROS.
Anticancer Agents Med Chem. 2024;24(6):412-422. doi: 10.2174/0118715206273000231211092743.
7
How did antibiotic growth promoters increase growth and feed efficiency in poultry?
Poult Sci. 2024 Feb;103(2):103278. doi: 10.1016/j.psj.2023.103278. Epub 2023 Nov 17.
8
Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease.
Physiol Rev. 2024 Jan 1;104(1):103-197. doi: 10.1152/physrev.00030.2022.
10
ROS and ERK Pathway Mechanistic Approach on Hepatic Insulin Resistance After Chronic Oral Exposure to Cadmium NOAEL Dose.
Biol Trace Elem Res. 2023 Aug;201(8):3903-3918. doi: 10.1007/s12011-022-03471-5. Epub 2022 Nov 8.

本文引用的文献

1
Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases.
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8803-8. doi: 10.1073/pnas.1010042108. Epub 2011 May 9.
2
Commensal-epithelial signaling mediated via formyl peptide receptors.
Am J Pathol. 2010 Dec;177(6):2782-90. doi: 10.2353/ajpath.2010.100529. Epub 2010 Oct 29.
3
Signaling functions of reactive oxygen species.
Biochemistry. 2010 Feb 9;49(5):835-42. doi: 10.1021/bi9020378.
4
Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation.
Free Radic Biol Med. 2009 Oct 15;47(8):1205-11. doi: 10.1016/j.freeradbiomed.2009.07.033. Epub 2009 Aug 3.
5
International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family.
Pharmacol Rev. 2009 Jun;61(2):119-61. doi: 10.1124/pr.109.001578. Epub 2009 Jun 4.
8
Microbes in gastrointestinal health and disease.
Gastroenterology. 2009 Jan;136(1):65-80. doi: 10.1053/j.gastro.2008.10.080. Epub 2008 Nov 19.
9
Expanding the functional diversity of proteins through cysteine oxidation.
Curr Opin Chem Biol. 2008 Dec;12(6):746-54. doi: 10.1016/j.cbpa.2008.07.028. Epub 2008 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验