Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322.
Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322.
J Biol Chem. 2011 Nov 4;286(44):38448-38455. doi: 10.1074/jbc.M111.268938. Epub 2011 Sep 15.
The normal microbial occupants of the mammalian intestine are crucial for maintaining gut homeostasis, yet the mechanisms by which intestinal cells perceive and respond to the microbiota are largely unknown. Intestinal epithelial contact with commensal bacteria and/or their products has been shown to activate noninflammatory signaling pathways, such as extracellular signal-related kinase (ERK), thus influencing homeostatic processes. We previously demonstrated that commensal bacteria stimulate ERK pathway activity via interaction with formyl peptide receptors (FPRs). In the current study, we expand on these findings and show that commensal bacteria initiate ERK signaling through rapid FPR-dependent reactive oxygen species (ROS) generation and subsequent modulation of MAP kinase phosphatase redox status. ROS generation induced by the commensal bacteria Lactobacillus rhamnosus GG and the FPR peptide ligand, N-formyl-Met-Leu-Phe, was abolished in the presence of selective inhibitors for G protein-coupled signaling and FPR ligand interaction. In addition, pretreatment of cells with inhibitors of ROS generation attenuated commensal bacteria-induced ERK signaling, indicating that ROS generation is required for ERK pathway activation. Bacterial colonization also led to oxidative inactivation of the redox-sensitive and ERK-specific phosphatase, DUSP3/VHR, and consequent stimulation of ERK pathway signaling. Together, these data demonstrate that commensal bacteria and their products activate ROS signaling in an FPR-dependent manner and define a mechanism by which cellular ROS influences the ERK pathway through a redox-sensitive regulatory circuit.
哺乳动物肠道内的正常微生物菌群对于维持肠道内环境稳态至关重要,但肠道细胞感知和响应微生物菌群的机制在很大程度上尚未可知。肠道上皮细胞与共生菌及其产物的接触已被证明能够激活非炎症信号通路,如细胞外信号相关激酶(ERK),从而影响稳态过程。我们之前的研究表明,共生菌通过与甲酰肽受体(FPRs)相互作用刺激 ERK 通路的活性。在本研究中,我们进一步扩展了这些发现,并表明共生菌通过快速的 FPR 依赖性活性氧(ROS)生成和随后调节 MAP 激酶磷酸酶氧化还原状态来启动 ERK 信号。在存在选择性 G 蛋白偶联信号转导和 FPR 配体相互作用抑制剂的情况下,共生菌 Lactobacillus rhamnosus GG 和 FPR 配体 N-甲酰基-Met-Leu-Phe 诱导的 ROS 生成被消除。此外,细胞中 ROS 生成抑制剂的预处理减弱了共生菌诱导的 ERK 信号,表明 ROS 生成是 ERK 通路激活所必需的。细菌定植也导致氧化还原敏感的 ERK 特异性磷酸酶 DUSP3/VHR 的失活,从而刺激 ERK 通路信号。总之,这些数据表明,共生菌及其产物以 FPR 依赖的方式激活 ROS 信号,并定义了一种通过细胞 ROS 通过氧化还原敏感的调节回路影响 ERK 通路的机制。