Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.
Biomacromolecules. 2012 Apr 9;13(4):982-91. doi: 10.1021/bm201639c. Epub 2012 Mar 30.
Our group previously developed a multifunctional, targeted cancer therapeutic based on Generation 5 (G5) polyamidoamine (PAMAM) dendrimers. In those studies we conjugated the targeting molecule folic acid (FA) and the chemotherapeutic drug methotrexate (MTX) sequentially. This complex macromolecule was shown to selectively bind and kill KB tumor cells that overexpress folate receptor (FR) in vitro and in vivo. However, the multistep conjugation strategy employed in the synthesis of the molecule resulted in heterogeneous populations having differing numbers and ratios of the functionally antagonistic FA and MTX. This led to inconsistent and sometimes biologically inactive batches of molecules, especially during large-scale synthesis. We here resolved this issue by using a novel triazine scaffold approach that reduces the number of dendrimer conjugation steps required and allows for the synthesis of G5 conjugates with defined ratios of FA and MTX. Although an unoccupied γ-glutamyl carboxylate of FA has been previously suggested to be nonessential for FR binding, the functional requirement of an open α-carboxylate still remains unclear. In an attempt to also address this question, we have synthesized isomeric FA dendrimer conjugates (α-carboxyl or γ-carboxyl linked). Competitive binding studies revealed that both linkages have virtually identical affinity toward FR on KB cells. Our studies show that a novel bifunctional triazine-based conjugate G5-Triazine-γMTX-αFA with identical numbers of FA and MTX binds to FR through a polyvalent interaction and induces cytotoxicity in KB cells through FR-mediated cellular internalization, inducing higher toxicity as compared to conjugates synthesized by the multistep strategy. This work serves as a proof of concept for the development of bifunctional dendrimer conjugates that require a defined ratio of two functional molecules.
我们的团队之前开发了一种基于第五代(G5)聚酰胺胺(PAMAM)树状大分子的多功能靶向癌症治疗方法。在那些研究中,我们依次连接了靶向分子叶酸(FA)和化疗药物甲氨蝶呤(MTX)。这种复杂的大分子在体外和体内均表现出选择性结合并杀死过度表达叶酸受体(FR)的 KB 肿瘤细胞的能力。然而,该分子的合成中采用的多步偶联策略导致具有不同数量和功能拮抗 FA 和 MTX 比例的异质群体。这导致分子的批次不一致,有时甚至是生物失活,尤其是在大规模合成期间。我们在这里通过使用新型三嗪支架方法解决了这个问题,该方法减少了所需的树状大分子偶联步骤的数量,并允许合成具有 FA 和 MTX 定义比例的 G5 缀合物。尽管先前有人提出 FA 的未占据 γ-谷氨酰羧酸盐对于 FR 结合是非必需的,但 α-羧酸盐的功能要求仍然不清楚。为了尝试解决这个问题,我们已经合成了异构 FA 树状大分子缀合物(α-羧基或γ-羧基连接)。竞争结合研究表明,两种连接方式在 KB 细胞上对 FR 具有几乎相同的亲和力。我们的研究表明,具有相同数量的 FA 和 MTX 的新型双功能三嗪基缀合物 G5-Triazine-γMTX-αFA 通过多价相互作用与 FR 结合,并通过 FR 介导的细胞内化诱导 KB 细胞的细胞毒性,与通过多步策略合成的缀合物相比,诱导更高的毒性。这项工作为开发需要两种功能分子的定义比例的双功能树状大分子缀合物提供了概念验证。