Suppr超能文献

玻化标本在有孔碳膜上的束流诱导运动。

Beam-induced motion of vitrified specimen on holey carbon film.

机构信息

Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South Street, Waltham, MA 02454, USA.

出版信息

J Struct Biol. 2012 Mar;177(3):630-7. doi: 10.1016/j.jsb.2012.02.003. Epub 2012 Feb 16.

Abstract

The contrast observed in images of frozen-hydrated biological specimens prepared for electron cryo-microscopy falls significantly short of theoretical predictions. In addition to limits imposed by the current instrumentation, it is widely acknowledged that motion of the specimen during its exposure to the electron beam leads to significant blurring in the recorded images. We have studied the amount and direction of motion of virus particles suspended in thin vitrified ice layers across holes in perforated carbon films using exposure series. Our data show that the particle motion is correlated within patches of 0.3-0.5 μm, indicating that the whole ice layer is moving in a drum-like motion, with accompanying particle rotations of up to a few degrees. Support films with smaller holes, as well as lower electron dose rates tend to reduce beam-induced specimen motion, consistent with a mechanical effect. Finally, analysis of movies showing changes in the specimen during beam exposure show that the specimen moves significantly more at the start of an exposure than towards its end. We show how alignment and averaging of movie frames can be used to restore high-resolution detail in images affected by beam-induced motion.

摘要

用于电子冷冻显微镜的冷冻水生物标本的图像对比度明显低于理论预测。除了当前仪器设备的限制之外,人们普遍认为,在电子束照射下,标本的运动导致记录图像的显著模糊。我们使用暴露系列研究了悬浮在薄玻璃化冰层中的病毒颗粒在穿孔碳膜孔中的运动的数量和方向。我们的数据表明,颗粒运动在 0.3-0.5μm 的斑块内相关,表明整个冰层在以鼓状运动的方式移动,同时伴有高达几度的颗粒旋转。小孔径的支撑膜以及较低的电子剂量率往往会减少束致样本运动,这与机械效应一致。最后,分析显示在束照射期间标本变化的电影表明,标本在曝光开始时比接近结束时移动得更多。我们展示了如何对齐和平均电影帧,以恢复受束致运动影响的图像中的高分辨率细节。

相似文献

1
Beam-induced motion of vitrified specimen on holey carbon film.
J Struct Biol. 2012 Mar;177(3):630-7. doi: 10.1016/j.jsb.2012.02.003. Epub 2012 Feb 16.
2
Non-rigid image registration to reduce beam-induced blurring of cryo-electron microscopy images.
J Synchrotron Radiat. 2013 Jan;20(Pt 1):58-66. doi: 10.1107/S0909049512044408. Epub 2012 Nov 29.
3
Movies of ice-embedded particles enhance resolution in electron cryo-microscopy.
Structure. 2012 Nov 7;20(11):1823-8. doi: 10.1016/j.str.2012.08.026. Epub 2012 Sep 27.
4
Fabrication of carbon films with ∼ 500nm holes for cryo-EM with a direct detector device.
J Struct Biol. 2014 Jan;185(1):42-7. doi: 10.1016/j.jsb.2013.11.002. Epub 2013 Nov 21.
5
Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.
Ultramicroscopy. 2015 Nov;158:26-32. doi: 10.1016/j.ultramic.2015.05.017. Epub 2015 May 27.
6
Devitrification reduces beam-induced movement in cryo-EM.
IUCrJ. 2021 Mar 1;8(Pt 2):186-194. doi: 10.1107/S2052252520016243.
7
Specimen Behavior in the Electron Beam.
Methods Enzymol. 2016;579:19-50. doi: 10.1016/bs.mie.2016.04.010. Epub 2016 May 31.
8
Processing of Cryo-EM Movie Data.
Methods Enzymol. 2016;579:103-24. doi: 10.1016/bs.mie.2016.04.009. Epub 2016 Jun 1.
9
Images of paraffin monolayer crystals with perfect contrast: minimization of beam-induced specimen motion.
Ultramicroscopy. 2011 Jan;111(2):90-100. doi: 10.1016/j.ultramic.2010.10.010. Epub 2010 Oct 26.
10
Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens.
J Struct Biol. 2016 Jan;193(1):33-44. doi: 10.1016/j.jsb.2015.11.006. Epub 2015 Nov 22.

引用本文的文献

1
Low-Dose Elemental Mapping of Light Atoms in Liquid-phase Materials Using Cryo-EELS.
Anal Chem. 2025 Aug 26;97(33):18055-18063. doi: 10.1021/acs.analchem.5c02121. Epub 2025 Jul 31.
2
Advancing Cryo-EM and Cryo-ET through Innovation in Sample Carriers: A Perspective.
Anal Chem. 2025 Jun 17;97(23):11959-11967. doi: 10.1021/acs.analchem.5c01534. Epub 2025 Jun 6.
3
Key metrics for monitoring performance variability in edge computing applications.
EURASIP J Wirel Commun Netw. 2025;2025(1):38. doi: 10.1186/s13638-025-02469-6. Epub 2025 May 30.
4
Intraflagellar transport trains can switch rails and move along multiple microtubules in intact primary cilia.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2413968122. doi: 10.1073/pnas.2413968122. Epub 2025 Apr 18.
5
Structural Biology for Target Identification and Validation.
Methods Mol Biol. 2025;2905:17-49. doi: 10.1007/978-1-0716-4418-8_2.
6
/ study of Cu-based nanocatalysts for CO electroreduction using electrochemical liquid cell TEM.
Front Chem. 2025 Jan 30;13:1525245. doi: 10.3389/fchem.2025.1525245. eCollection 2025.
9
The big chill: Growth of structural biology with cryo-electron tomography.
QRB Discov. 2024 Dec 13;5:e10. doi: 10.1017/qrd.2024.10. eCollection 2024.
10
: a software package for large-scale cryo-electron tomography data preprocessing, community data sharing and collaborative computing.
J Appl Crystallogr. 2024 Nov 22;57(Pt 6):2010-2016. doi: 10.1107/S1600576724010264. eCollection 2024 Dec 1.

本文引用的文献

1
Tilt-pair analysis of images from a range of different specimens in single-particle electron cryomicroscopy.
J Mol Biol. 2011 Nov 11;413(5):1028-46. doi: 10.1016/j.jmb.2011.09.008. Epub 2011 Sep 12.
2
Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy.
J Struct Biol. 2011 Dec;176(3):404-8. doi: 10.1016/j.jsb.2011.09.002. Epub 2011 Sep 10.
3
Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9637-42. doi: 10.1073/pnas.1018104108. Epub 2011 May 17.
4
Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects.
Biophys J. 2011 May 18;100(10):2331-7. doi: 10.1016/j.bpj.2011.04.018.
5
Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy.
Curr Opin Struct Biol. 2011 Apr;21(2):265-73. doi: 10.1016/j.sbi.2011.01.008. Epub 2011 Feb 18.
6
Images of paraffin monolayer crystals with perfect contrast: minimization of beam-induced specimen motion.
Ultramicroscopy. 2011 Jan;111(2):90-100. doi: 10.1016/j.ultramic.2010.10.010. Epub 2010 Oct 26.
7
Atomic model of an infectious rotavirus particle.
EMBO J. 2011 Jan 19;30(2):408-16. doi: 10.1038/emboj.2010.322. Epub 2010 Dec 14.
8
Design of an electron microscope phase plate using a focused continuous-wave laser.
New J Phys. 2010 Jul;12. doi: 10.1088/1367-2630/12/7/073011.
9
Cryomesh: a new substrate for cryo-electron microscopy.
Microsc Microanal. 2010 Feb;16(1):43-53. doi: 10.1017/S1431927609991310.
10
The resolution dependence of optimal exposures in liquid nitrogen temperature electron cryomicroscopy of catalase crystals.
J Struct Biol. 2010 Mar;169(3):431-7. doi: 10.1016/j.jsb.2009.11.014. Epub 2009 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验