文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对单个分子内的电荷分布进行成像。

Imaging the charge distribution within a single molecule.

机构信息

IBM Research-Zurich, 8803 Rüschlikon, Switzerland.

出版信息

Nat Nanotechnol. 2012 Feb 26;7(4):227-31. doi: 10.1038/nnano.2012.20.


DOI:10.1038/nnano.2012.20
PMID:22367099
Abstract

Scanning tunnelling microscopy and atomic force microscopy can be used to study the electronic and structural properties of surfaces, as well as molecules and nanostructures adsorbed on surfaces, with atomic precision, but they cannot directly probe the distribution of charge in these systems. However, another form of scanning probe microscopy, Kelvin probe force microscopy, can be used to measure the local contact potential difference between the scanning probe tip and the surface, a quantity that is closely related to the charge distribution on the surface. Here, we use a combination of scanning tunnelling microscopy, atomic force microscopy and Kelvin probe force microscopy to examine naphthalocyanine molecules (which have been used as molecular switches) on a thin insulating layer of NaCl on Cu(111). We show that Kelvin probe force microscopy can map the local contact potential difference of this system with submolecular resolution, and we use density functional theory calculations to verify that these maps reflect the intramolecular distribution of charge. This approach could help to provide fundamental insights into single-molecule switching and bond formation, processes that are usually accompanied by the redistribution of charge within or between molecules.

摘要

扫描隧道显微镜和原子力显微镜可用于以原子精度研究表面的电子和结构特性,以及吸附在表面上的分子和纳米结构,但它们无法直接探测这些系统中的电荷分布。然而,另一种形式的扫描探针显微镜——Kelvin 探针力显微镜,可以用于测量扫描探针尖端和表面之间的局部接触电位差,这一量与表面上的电荷分布密切相关。在这里,我们使用扫描隧道显微镜、原子力显微镜和 Kelvin 探针力显微镜相结合的方法,研究了在 Cu(111)上的 NaCl 薄绝缘层上的萘酞菁分子(曾被用作分子开关)。我们表明,Kelvin 探针力显微镜可以以亚分子分辨率绘制该系统的局部接触电位差图,并且我们使用密度泛函理论计算验证了这些图谱反映了分子内的电荷分布。这种方法可以帮助提供对单分子开关和键形成的基本理解,这些过程通常伴随着分子内或分子间的电荷重新分布。

相似文献

[1]
Imaging the charge distribution within a single molecule.

Nat Nanotechnol. 2012-2-26

[2]
Seeing the charge within.

Nat Nanotechnol. 2012-3-18

[3]
Manipulations of atoms and molecules by scanning probe microscopy.

J Nanosci Nanotechnol. 2007-8

[4]
Scanning probe microscopy in catalysis.

J Nanosci Nanotechnol. 2004-9

[5]
Real versus measured surface potentials in scanning Kelvin probe microscopy.

ACS Nano. 2008-4

[6]
High-resolution noncontact atomic force microscopy.

Nanotechnology. 2009-7-1

[7]
Scanning probe microscopy investigation of self-organized perylenetetracarboxdiimide nanostructures at surfaces: structural and electronic properties.

Small. 2007-1

[8]
Identification of nanoparticles and nanosystems in biological matrices with scanning probe microscopy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018-4-17

[9]
Mapping the surface potential, charge density and adhesion of cellulose nanocrystals using advanced scanning probe microscopy.

Carbohydr Polym. 2020-10-15

[10]
Binary-state scanning probe microscopy for parallel imaging.

Nat Commun. 2022-3-17

引用本文的文献

[1]
Doping-tunable charge ordering in semiconducting single-layer CrSe.

Sci Adv. 2025-9-5

[2]
Reconstructing Pristine Molecular Orbitals from Scanning Tunneling Microscope Images via Artificial Intelligence Approaches.

JACS Au. 2025-6-16

[3]
Probing Molecular Properties at Atomic Length Scale Using Charge-State Control.

Chem Rev. 2025-6-25

[4]
Surface Mapping of Functionalized Two-Dimensional Nanosheets: Graphene Oxide and MXene Materials.

Langmuir. 2025-5-20

[5]
Local work function on graphene nanoribbons.

Beilstein J Nanotechnol. 2024-8-29

[6]
Probing charge redistribution at the interface of self-assembled cyclo-P pentamers on Ag(111).

Nat Commun. 2024-8-2

[7]
Scanning Probe Microscopy Characterization of Biomolecules enabled by Mass-Selective, Soft-landing Electrospray Ion Beam Deposition.

Chemphyschem. 2024-11-4

[8]
Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements.

Beilstein J Nanotechnol. 2024-5-23

[9]
Electrostatic potentials of atomic nanostructures at metal surfaces quantified by scanning quantum dot microscopy.

Nat Commun. 2024-3-13

[10]
Atomically Precise Manufacturing of Silicon Electronics.

ACS Nano. 2024-3-5

本文引用的文献

[1]
High-resolution molecular orbital imaging using a p-wave STM tip.

Phys Rev Lett. 2011-8-15

[2]
Controlling the charge state of a single redox molecular switch.

Phys Rev Lett. 2011-5-27

[3]
Charge state control of molecules reveals modification of the tunneling barrier with intramolecular contrast.

Nano Lett. 2011-3-23

[4]
Reversible bond formation in a gold-atom-organic-molecule complex as a molecular switch.

Phys Rev Lett. 2010-12-28

[5]
Manipulating localized molecular orbitals by single-atom contacts.

Phys Rev Lett. 2010-9-13

[6]
Organic structure determination using atomic-resolution scanning probe microscopy.

Nat Chem. 2010-8-1

[7]
Atomic contact potential variations of Si(111)-7 x 7 analyzed by Kelvin probe force microscopy.

Nanotechnology. 2010-5-20

[8]
New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors.

Phys Rev Lett. 2009-12-28

[9]
Portrait of the potential barrier at metal-organic nanocontacts.

Nat Mater. 2010-1-24

[10]
Measuring the charge state of point defects on MgO/Ag(001).

J Am Chem Soc. 2009-12-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索