IBM Research-Zurich, 8803 Rüschlikon, Switzerland.
Nat Nanotechnol. 2012 Feb 26;7(4):227-31. doi: 10.1038/nnano.2012.20.
Scanning tunnelling microscopy and atomic force microscopy can be used to study the electronic and structural properties of surfaces, as well as molecules and nanostructures adsorbed on surfaces, with atomic precision, but they cannot directly probe the distribution of charge in these systems. However, another form of scanning probe microscopy, Kelvin probe force microscopy, can be used to measure the local contact potential difference between the scanning probe tip and the surface, a quantity that is closely related to the charge distribution on the surface. Here, we use a combination of scanning tunnelling microscopy, atomic force microscopy and Kelvin probe force microscopy to examine naphthalocyanine molecules (which have been used as molecular switches) on a thin insulating layer of NaCl on Cu(111). We show that Kelvin probe force microscopy can map the local contact potential difference of this system with submolecular resolution, and we use density functional theory calculations to verify that these maps reflect the intramolecular distribution of charge. This approach could help to provide fundamental insights into single-molecule switching and bond formation, processes that are usually accompanied by the redistribution of charge within or between molecules.
扫描隧道显微镜和原子力显微镜可用于以原子精度研究表面的电子和结构特性,以及吸附在表面上的分子和纳米结构,但它们无法直接探测这些系统中的电荷分布。然而,另一种形式的扫描探针显微镜——Kelvin 探针力显微镜,可以用于测量扫描探针尖端和表面之间的局部接触电位差,这一量与表面上的电荷分布密切相关。在这里,我们使用扫描隧道显微镜、原子力显微镜和 Kelvin 探针力显微镜相结合的方法,研究了在 Cu(111)上的 NaCl 薄绝缘层上的萘酞菁分子(曾被用作分子开关)。我们表明,Kelvin 探针力显微镜可以以亚分子分辨率绘制该系统的局部接触电位差图,并且我们使用密度泛函理论计算验证了这些图谱反映了分子内的电荷分布。这种方法可以帮助提供对单分子开关和键形成的基本理解,这些过程通常伴随着分子内或分子间的电荷重新分布。
Nat Nanotechnol. 2012-2-26
Nat Nanotechnol. 2012-3-18
J Nanosci Nanotechnol. 2007-8
J Nanosci Nanotechnol. 2004-9
Nanotechnology. 2009-7-1
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018-4-17
Nat Commun. 2022-3-17
Sci Adv. 2025-9-5
Beilstein J Nanotechnol. 2024-8-29
Beilstein J Nanotechnol. 2024-5-23
ACS Nano. 2024-3-5
Phys Rev Lett. 2011-8-15
Phys Rev Lett. 2011-5-27
Phys Rev Lett. 2010-12-28
Phys Rev Lett. 2010-9-13
Nanotechnology. 2010-5-20
Nat Mater. 2010-1-24
J Am Chem Soc. 2009-12-9