Suppr超能文献

预测药物的不良副作用。

Predicting adverse side effects of drugs.

机构信息

School of Informatics, Indiana University, Indianapolis, IN 46202, USA.

出版信息

BMC Genomics. 2011 Dec 23;12 Suppl 5(Suppl 5):S11. doi: 10.1186/1471-2164-12-S5-S11.

Abstract

BACKGROUND

Studies of toxicity and unintended side effects can lead to improved drug safety and efficacy. One promising form of study comes from molecular systems biology in the form of "systems pharmacology". Systems pharmacology combines data from clinical observation and molecular biology. This approach is new, however, and there are few examples of how it can practically predict adverse reactions (ADRs) from an experimental drug with acceptable accuracy.

RESULTS

We have developed a new and practical computational framework to accurately predict ADRs of trial drugs. We combine clinical observation data with drug target data, protein-protein interaction (PPI) networks, and gene ontology (GO) annotations. We use cardiotoxicity, one of the major causes for drug withdrawals, as a case study to demonstrate the power of the framework. Our results show that an in silico model built on this framework can achieve a satisfactory cardiotoxicity ADR prediction performance (median AUC = 0.771, Accuracy = 0.675, Sensitivity = 0.632, and Specificity = 0.789). Our results also demonstrate the significance of incorporating prior knowledge, including gene networks and gene annotations, to improve future ADR assessments.

CONCLUSIONS

Biomolecular network and gene annotation information can significantly improve the predictive accuracy of ADR of drugs under development. The use of PPI networks can increase prediction specificity and the use of GO annotations can increase prediction sensitivity. Using cardiotoxicity as an example, we are able to further identify cardiotoxicity-related proteins among drug target expanding PPI networks. The systems pharmacology approach that we developed in this study can be generally applicable to all future developmental drug ADR assessments and predictions.

摘要

背景

毒性和非预期副作用的研究可以提高药物安全性和疗效。一种有前途的研究形式来自分子系统生物学,即“系统药理学”。系统药理学结合了临床观察和分子生物学的数据。然而,这种方法是新的,很少有例子可以实际以可接受的准确性从实验药物中预测不良反应 (ADR)。

结果

我们开发了一种新的实用计算框架,可以准确预测试验药物的 ADR。我们将临床观察数据与药物靶点数据、蛋白质-蛋白质相互作用 (PPI) 网络和基因本体 (GO) 注释相结合。我们使用心脏毒性作为一个案例研究,心脏毒性是药物撤药的主要原因之一,以展示该框架的强大功能。我们的结果表明,基于该框架构建的计算模型可以实现令人满意的心脏毒性 ADR 预测性能(中位数 AUC = 0.771、准确性 = 0.675、敏感性 = 0.632 和特异性 = 0.789)。我们的结果还表明,纳入先验知识(包括基因网络和基因注释)对于提高未来的 ADR 评估非常重要。

结论

生物分子网络和基因注释信息可以显著提高正在开发的药物的 ADR 预测准确性。使用 PPI 网络可以提高预测特异性,使用 GO 注释可以提高预测敏感性。以心脏毒性为例,我们能够在药物靶点扩展的 PPI 网络中进一步识别与心脏毒性相关的蛋白质。我们在这项研究中开发的系统药理学方法可以普遍适用于所有未来的药物 ADR 评估和预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d282/3287493/5088aa7b67a3/1471-2164-12-S5-S11-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验