Department of Microbiology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea.
Infect Immun. 2012 May;80(5):1639-49. doi: 10.1128/IAI.06161-11. Epub 2012 Feb 27.
Pseudomonas aeruginosa undergoes cell elongation and forms robust biofilms during anaerobic respiratory growth using nitrate (NO(3)(-)) as an alternative electron acceptor. Understanding the mechanism of cell shape change induced upon anaerobiosis is crucial to the development of effective treatments against P. aeruginosa biofilm infection. Here, we uncovered the molecular basis of anaerobiosis-triggered cell elongation and identified vitamin B(12) to be a molecule that can reinstate defective anaerobic growth of P. aeruginosa. The ratio of total cellular DNA content to protein content was significantly decreased in the PAO1 strain grown under anaerobic conditions, indicating that DNA replication is impaired during anaerobic growth. Anaerobic growth of PAO1 reached a higher cell density in the presence of vitamin B(12), an essential coenzyme of class II ribonucleotide reductase. In addition, cell morphology returned to a normal rod shape and transcription of stress-response genes was downregulated under the same anaerobic growth conditions. These results suggest that vitamin B(12), the production of which was suppressed during anaerobic growth, can restore cellular machineries for DNA replication and therefore facilitate better anaerobic growth of P. aeruginosa with normal cell division. Importantly, biofilm formation was substantially decreased when grown with vitamin B(12), further demonstrating that anaerobiosis-induced cell elongation is responsible for robust biofilm formation. Taken together, our data reveal mechanistic details of a morphological change that naturally occurs during anaerobic growth of P. aeruginosa and illustrates the ability of vitamin B(12) to modulate the biofilm-forming capacity of P. aeruginosa under such condition.
铜绿假单胞菌在以硝酸盐(NO3(-))作为替代电子受体进行厌氧呼吸生长时会发生细胞伸长,并形成坚固的生物膜。了解厌氧条件下引起细胞形状变化的机制对于开发针对铜绿假单胞菌生物膜感染的有效治疗方法至关重要。在这里,我们揭示了厌氧触发细胞伸长的分子基础,并确定维生素 B(12)是一种可以恢复铜绿假单胞菌缺陷型厌氧生长的分子。在厌氧条件下生长的 PAO1 菌株中,总细胞 DNA 含量与蛋白质含量的比值显著降低,表明 DNA 复制在厌氧生长过程中受到损害。在维生素 B(12)的存在下,PAO1 的厌氧生长达到了更高的细胞密度,维生素 B(12)是 II 类核糖核苷酸还原酶的必需辅酶。此外,在相同的厌氧生长条件下,细胞形态恢复为正常的杆状,应激反应基因的转录下调。这些结果表明,维生素 B(12)在厌氧生长过程中被抑制,它可以恢复 DNA 复制所需的细胞机制,从而促进铜绿假单胞菌更好的、具有正常细胞分裂的厌氧生长。重要的是,当用维生素 B(12)生长时,生物膜的形成大大减少,进一步证明了厌氧诱导的细胞伸长是导致坚固生物膜形成的原因。总之,我们的数据揭示了铜绿假单胞菌在厌氧生长过程中自然发生的形态变化的机制细节,并说明了维生素 B(12)在这种条件下调节铜绿假单胞菌生物膜形成能力的能力。