Discovery Biology Department, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, Republic of Korea.
Translation Research Department, Medicinal Chemistry, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, Republic of Korea.
J Biol Chem. 2020 Jul 17;295(29):10081-10091. doi: 10.1074/jbc.RA120.013295. Epub 2020 May 13.
Thiamine pyrophosphate (TPP) is an essential cofactor for various pivotal cellular processes in all living organisms, including bacteria. Thiamine biosynthesis occurs in bacteria but not in humans; therefore, the enzymes in this pathway are attractive targets for antibiotic development. Among these enzymes, thiamine monophosphate kinase (ThiL) catalyzes the final step of this pathway, phosphorylating thiamine monophosphate to produce TPP. Here, we extensively investigated ThiL in , a major pathogen responsible for hospital-acquired infections. We demonstrate that deletion abolishes not only thiamine biosynthesis but also thiamine salvage capability and results in growth defects of the Δ strain even in the presence of thiamine derivatives, except for TPP. Most importantly, the pathogenesis of the Δ strain was markedly attenuated, compared with that of WT cells, with lower inflammatory cytokine induction and 10-10-fold decreased bacterial loads in an infection model in which the intracellular TPP level was in the submicromolar range. To validate ThiL (PaThiL) as a drug target, we further characterized its biochemical properties, determining a of 4.0 ± 0.2 nmol·min and values of 111 ± 8 and 8.0 ± 3.5 μm for ATP and thiamine monophosphate, respectively. An small-molecule screening assay identified PaThiL inhibitors including WAY213613, a noncompetitive inhibitor with a value of 13.4 ± 2.3 μm and potential antibacterial activity against These comprehensive biological and biochemical results indicate that PaThiL represents a potential drug target for the development of an augmented repertoire of antibiotics against .
焦磷酸硫胺素(TPP)是所有生物(包括细菌)中各种关键细胞过程的必需辅酶。硫胺素生物合成发生在细菌中,但不在人类中;因此,该途径中的酶是抗生素开发的有吸引力的靶标。在这些酶中,硫胺素一磷酸激酶(ThiL)催化该途径的最后一步,将硫胺素一磷酸磷酸化生成 TPP。在这里,我们广泛研究了 ,一种主要的医院获得性感染病原体中的 ThiL。我们证明 缺失不仅消除了硫胺素生物合成,而且消除了硫胺素回收能力,即使在存在硫胺素衍生物的情况下,除了 TPP 之外,Δ 菌株的生长也存在缺陷。最重要的是,与 WT 细胞相比,Δ 菌株的发病机制明显减弱,在细胞内 TPP 水平处于亚毫摩尔范围的感染模型中,诱导的炎症细胞因子减少,细菌载量降低了 10-10 倍。为了验证 ThiL(PaThiL)作为药物靶标,我们进一步表征了其生化特性,确定了 4.0±0.2 nmol·min 的 Km 值,以及分别为 111±8 和 8.0±3.5 μm 的 ATP 和硫胺素一磷酸的 值。小分子筛选测定鉴定了 PaThiL 抑制剂,包括 WAY213613,一种非竞争性抑制剂, 值为 13.4±2.3 μm,对 具有潜在的抗菌活性。这些全面的生物学和生化结果表明,PaThiL 代表了针对 的抗生素开发的潜在药物靶标。