Suppr超能文献

胰腺癌中神经周围侵犯、缺氧和纤维形成的治疗潜力。

Therapeutic potential of perineural invasion, hypoxia and desmoplasia in pancreatic cancer.

机构信息

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

出版信息

Curr Pharm Des. 2012;18(17):2395-403. doi: 10.2174/13816128112092395.

Abstract

Pancreatic cancer is one of the most fatal human malignancies. Though a relatively rare malignancy, it remains one of the deadliest tumors, with an extremely high mortality rate. The prognosis of patients with pancreatic cancer remains poor; only patients with small tumors and complete resection have a chance of a complete cure. Pancreatic cancer responds poorly to conventional therapies, including chemotherapy and irradiation. Tumor-specific targeted therapy is a relatively recent addition to the arsenal of anti-cancer therapies. It is important to find novel targets to distinguish tumor cells from their normal counterparts in therapeutic approaches. In the past few decades, studies have revealed the molecular mechanisms of pancreatic tumorigenesis, growth, invasion and metastasis. The proteins that participate in the pathophysiological processes of pancreatic cancer might be potential targets for therapy. This review describes the main players in perineural invasion, hypoxia and desmoplasia and the molecular mechanisms of these pathophysiological processes.

摘要

胰腺癌是最致命的人类恶性肿瘤之一。尽管胰腺癌相对罕见,但它仍是最致命的肿瘤之一,死亡率极高。胰腺癌患者的预后仍然很差;只有肿瘤较小且完全切除的患者才有完全治愈的机会。胰腺癌对包括化疗和放疗在内的常规疗法反应不佳。肿瘤特异性靶向治疗是抗癌疗法的一个相对较新的补充。在治疗方法中找到区分肿瘤细胞与其正常细胞的新靶点非常重要。在过去几十年中,研究揭示了胰腺肿瘤发生、生长、侵袭和转移的分子机制。参与胰腺癌病理生理过程的蛋白质可能是治疗的潜在靶点。本文描述了神经周围浸润、缺氧和纤维组织增生的主要参与者以及这些病理生理过程的分子机制。

相似文献

1
Therapeutic potential of perineural invasion, hypoxia and desmoplasia in pancreatic cancer.
Curr Pharm Des. 2012;18(17):2395-403. doi: 10.2174/13816128112092395.
3
Targeting the cancer-stroma interaction: a potential approach for pancreatic cancer treatment.
Curr Pharm Des. 2012;18(17):2404-15. doi: 10.2174/13816128112092404.
4
Metformin Reduces Desmoplasia in Pancreatic Cancer by Reprogramming Stellate Cells and Tumor-Associated Macrophages.
PLoS One. 2015 Dec 7;10(12):e0141392. doi: 10.1371/journal.pone.0141392. eCollection 2015.
5
Experimental models of pancreatic cancer desmoplasia.
Lab Invest. 2018 Jan;98(1):27-40. doi: 10.1038/labinvest.2017.127. Epub 2017 Nov 20.
7
Key role of pancreatic stellate cells in pancreatic cancer.
Cancer Lett. 2016 Oct 10;381(1):194-200. doi: 10.1016/j.canlet.2015.10.035. Epub 2015 Nov 10.
8
Hypoxia: a barricade to conquer the pancreatic cancer.
Cell Mol Life Sci. 2020 Aug;77(16):3077-3083. doi: 10.1007/s00018-019-03444-3. Epub 2020 Jan 6.
9
Pancreatic Stellate Cells Facilitate Perineural Invasion of Pancreatic Cancer via HGF/c-Met Pathway.
Cell Transplant. 2019 Sep-Oct;28(9-10):1289-1298. doi: 10.1177/0963689719851772. Epub 2019 Jun 4.
10
Pancreatic stellate cell: Pandora's box for pancreatic disease biology.
World J Gastroenterol. 2017 Jan 21;23(3):382-405. doi: 10.3748/wjg.v23.i3.382.

引用本文的文献

1
When is belzutifan the right option for von Hippel-Lindau disease-associated hemangioblastomas?-a critical review of LITESPARK-004 results.
Transl Cancer Res. 2025 May 30;14(5):2558-2562. doi: 10.21037/tcr-2024-2478. Epub 2025 May 13.
2
Hallmarks of perineural invasion in pancreatic ductal adenocarcinoma: new biological dimensions.
Front Oncol. 2024 Jul 25;14:1421067. doi: 10.3389/fonc.2024.1421067. eCollection 2024.
3
Perineural invasion detection in pancreatic ductal adenocarcinoma using artificial intelligence.
Sci Rep. 2023 Aug 21;13(1):13628. doi: 10.1038/s41598-023-40833-y.
4
Clinicopathological Characteristics, Prognosis, and Correlated Tumor Cell Function of Tropomodulin-3 in Pancreatic Adenocarcinoma.
Comb Chem High Throughput Screen. 2024;27(7):1011-1021. doi: 10.2174/1386207326666230810142646.
5
Important Cells and Factors from Tumor Microenvironment Participated in Perineural Invasion.
Cancers (Basel). 2023 Feb 21;15(5):1360. doi: 10.3390/cancers15051360.
6
Role of tumor cell sialylation in pancreatic cancer progression.
Adv Cancer Res. 2023;157:123-155. doi: 10.1016/bs.acr.2022.07.003. Epub 2022 Sep 27.
7
8
Arl4c promotes the growth and drug resistance of pancreatic cancer by regulating tumor-stromal interactions.
iScience. 2021 Nov 3;24(12):103400. doi: 10.1016/j.isci.2021.103400. eCollection 2021 Dec 17.
9
CAFs Interacting With TAMs in Tumor Microenvironment to Enhance Tumorigenesis and Immune Evasion.
Front Oncol. 2021 Jul 14;11:668349. doi: 10.3389/fonc.2021.668349. eCollection 2021.
10
The expression and clinical prognostic value of protein phosphatase 1 catalytic subunit beta in pancreatic cancer.
Bioengineered. 2021 Dec;12(1):2763-2778. doi: 10.1080/21655979.2021.1934243.

本文引用的文献

2
Stem cell factor/c-kit signaling enhances invasion of pancreatic cancer cells via HIF-1α under normoxic condition.
Cancer Lett. 2011 Apr 28;303(2):108-17. doi: 10.1016/j.canlet.2011.01.017. Epub 2011 Feb 12.
7
Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer.
J Neuroimmunol. 2010 Jul 27;224(1-2):39-44. doi: 10.1016/j.jneuroim.2010.05.007. Epub 2010 Jul 13.
8
Cancer statistics, 2010.
CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300. doi: 10.3322/caac.20073. Epub 2010 Jul 7.
10
Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves.
J Natl Cancer Inst. 2010 Jan 20;102(2):107-18. doi: 10.1093/jnci/djp456. Epub 2010 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验