Suppr超能文献

将非同义变异的预测功能纳入外显子组测序数据的基因分析:一项比较研究。

Incorporating predicted functions of nonsynonymous variants into gene-based analysis of exome sequencing data: a comparative study.

作者信息

Wei Peng, Liu Xiaoming, Fu Yun-Xin

机构信息

Division of Biostatistics, University of Texas School of Public Health, 1200 Herman Presser Drive, Houston, TX 77030, USA.

出版信息

BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S20. doi: 10.1186/1753-6561-5-S9-S20.

Abstract

Next-generation sequencing has opened up new avenues for the genetic study of complex traits. However, because of the small number of observations for any given rare allele and high sequencing error, it is a challenge to identify functional rare variants associated with the phenotype of interest. Recent research shows that grouping variants by gene and incorporating computationally predicted functions of variants may provide higher statistical power. On the other hand, many algorithms are available for predicting the damaging effects of nonsynonymous variants. Here, we use the simulated mini-exome data of Genetic Analysis Workshop 17 to study and compare the effects of incorporating the functional predictions of single-nucleotide polymorphisms using two popular algorithms, SIFT and PolyPhen-2, into a gene-based association test. We also propose a simple mixture model that can effectively combine test results based on different functional prediction algorithms.

摘要

下一代测序为复杂性状的遗传学研究开辟了新途径。然而,由于任何给定稀有等位基因的观测数量较少且测序错误率高,识别与感兴趣的表型相关的功能性稀有变异是一项挑战。最近的研究表明,按基因对变异进行分组并纳入变异的计算预测功能可能会提供更高的统计效力。另一方面,有许多算法可用于预测非同义变异的有害影响。在这里,我们使用遗传分析研讨会17的模拟微外显子数据来研究和比较将使用两种流行算法SIFT和PolyPhen-2的单核苷酸多态性的功能预测纳入基于基因的关联测试的效果。我们还提出了一个简单的混合模型,该模型可以有效地结合基于不同功能预测算法的测试结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a20/3287855/9fc573f188f4/1753-6561-5-S9-S20-1.jpg

相似文献

2
Gene-based multiple trait analysis for exome sequencing data.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S75. doi: 10.1186/1753-6561-5-S9-S75.
7
A Targeted, Next-Generation Genetic Sequencing Study on Tetralogy of Fallot, Combined With Cleft Lip and Palate.
J Craniofac Surg. 2017 Jun;28(4):e351-e355. doi: 10.1097/SCS.0000000000003598.
8
A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms in human cytochromes P450.
Drug Metab Dispos. 2009 May;37(5):977-91. doi: 10.1124/dmd.108.026047. Epub 2009 Feb 9.
9
Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies.
Hum Mol Genet. 2015 Apr 15;24(8):2125-37. doi: 10.1093/hmg/ddu733. Epub 2014 Dec 30.

引用本文的文献

3
Genome interpretation using in silico predictors of variant impact.
Hum Genet. 2022 Oct;141(10):1549-1577. doi: 10.1007/s00439-022-02457-6. Epub 2022 Apr 30.
4
Rare and low-frequency exonic variants and gene-by-smoking interactions in pulmonary function.
Sci Rep. 2021 Sep 29;11(1):19365. doi: 10.1038/s41598-021-98120-7.
5
Application of Computational Biology and Artificial Intelligence Technologies in Cancer Precision Drug Discovery.
Biomed Res Int. 2019 Nov 11;2019:8427042. doi: 10.1155/2019/8427042. eCollection 2019.
6
Performance evaluation of pathogenicity-computation methods for missense variants.
Nucleic Acids Res. 2018 Sep 6;46(15):7793-7804. doi: 10.1093/nar/gky678.
7
Identification and functional analysis of c.422_423InsT, a novel mutation of the gene in a patient with diabetes.
Mol Genet Genomic Med. 2016 Nov 30;5(1):50-65. doi: 10.1002/mgg3.261. eCollection 2017 Jan.
8
Incorporating ENCODE information into association analysis of whole genome sequencing data.
BMC Proc. 2016 Oct 18;10(Suppl 7):257-261. doi: 10.1186/s12919-016-0040-y. eCollection 2016.
10
Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies.
Hum Mol Genet. 2015 Apr 15;24(8):2125-37. doi: 10.1093/hmg/ddu733. Epub 2014 Dec 30.

本文引用的文献

1
Genetic Analysis Workshop 17 mini-exome simulation.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S2. doi: 10.1186/1753-6561-5-S9-S2.
2
Network-based genomic discovery: application and comparison of Markov random field models.
J R Stat Soc Ser C Appl Stat. 2010 Jan 1;59(1):105-125. doi: 10.1111/j.1467-9876.2009.00686.x.
3
MutationTaster evaluates disease-causing potential of sequence alterations.
Nat Methods. 2010 Aug;7(8):575-6. doi: 10.1038/nmeth0810-575.
4
Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations.
Genet Test Mol Biomarkers. 2010 Aug;14(4):533-7. doi: 10.1089/gtmb.2010.0036.
5
Uncovering the roles of rare variants in common disease through whole-genome sequencing.
Nat Rev Genet. 2010 Jun;11(6):415-25. doi: 10.1038/nrg2779.
6
Pooled association tests for rare variants in exon-resequencing studies.
Am J Hum Genet. 2010 Jun 11;86(6):832-8. doi: 10.1016/j.ajhg.2010.04.005. Epub 2010 May 13.
7
A method and server for predicting damaging missense mutations.
Nat Methods. 2010 Apr;7(4):248-9. doi: 10.1038/nmeth0410-248.
8
Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.
Nat Protoc. 2009;4(7):1073-81. doi: 10.1038/nprot.2009.86. Epub 2009 Jun 25.
9
A groupwise association test for rare mutations using a weighted sum statistic.
PLoS Genet. 2009 Feb;5(2):e1000384. doi: 10.1371/journal.pgen.1000384. Epub 2009 Feb 13.
10
SNAP predicts effect of mutations on protein function.
Bioinformatics. 2008 Oct 15;24(20):2397-8. doi: 10.1093/bioinformatics/btn435. Epub 2008 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验