Wei Peng, Liu Xiaoming, Fu Yun-Xin
Division of Biostatistics, University of Texas School of Public Health, 1200 Herman Presser Drive, Houston, TX 77030, USA.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S20. doi: 10.1186/1753-6561-5-S9-S20.
Next-generation sequencing has opened up new avenues for the genetic study of complex traits. However, because of the small number of observations for any given rare allele and high sequencing error, it is a challenge to identify functional rare variants associated with the phenotype of interest. Recent research shows that grouping variants by gene and incorporating computationally predicted functions of variants may provide higher statistical power. On the other hand, many algorithms are available for predicting the damaging effects of nonsynonymous variants. Here, we use the simulated mini-exome data of Genetic Analysis Workshop 17 to study and compare the effects of incorporating the functional predictions of single-nucleotide polymorphisms using two popular algorithms, SIFT and PolyPhen-2, into a gene-based association test. We also propose a simple mixture model that can effectively combine test results based on different functional prediction algorithms.
下一代测序为复杂性状的遗传学研究开辟了新途径。然而,由于任何给定稀有等位基因的观测数量较少且测序错误率高,识别与感兴趣的表型相关的功能性稀有变异是一项挑战。最近的研究表明,按基因对变异进行分组并纳入变异的计算预测功能可能会提供更高的统计效力。另一方面,有许多算法可用于预测非同义变异的有害影响。在这里,我们使用遗传分析研讨会17的模拟微外显子数据来研究和比较将使用两种流行算法SIFT和PolyPhen-2的单核苷酸多态性的功能预测纳入基于基因的关联测试的效果。我们还提出了一个简单的混合模型,该模型可以有效地结合基于不同功能预测算法的测试结果。