Suppr超能文献

糖指纹图谱:计算糖库中的多样性。

Glycan fingerprints: calculating diversity in glycan libraries.

机构信息

Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

ACS Chem Biol. 2012 May 18;7(5):829-34. doi: 10.1021/cb300003z. Epub 2012 Mar 9.

Abstract

Carbohydrate libraries printed in glycan micorarray format have had a great impact on the high-throughput analysis of the specificity of a wide range of mammalian, plant, and bacterial lectins. Chemical and chemo-enzymatic synthesis allows the construction of diverse glycan libraries but requires substantial effort and resources. To leverage the synthetic effort, the ideal library would be a minimal subset of all structures that provides optimal diversity. Therefore, a measure of library diversity is needed. To this end, we developed a linear representation of glycans using standard chemoinformatic tools. This representation was applied to measure pairwise similarity and consequently diversity of glycan libraries in a single value. The diversities of four existing sialoside glycan arrays were compared. More diverse arrays are proposed reducing the number of glycans. This algorithm can be applied to diverse aspects of library design from target structure selection to the choice of building blocks for their synthesis.

摘要

糖库以聚糖微阵列的形式被打印,这对高通量分析各种哺乳动物、植物和细菌凝集素的特异性产生了巨大的影响。化学和化学酶合成允许构建各种聚糖文库,但需要大量的努力和资源。为了利用合成的努力,理想的文库应该是所有结构的最小子集,提供最佳的多样性。因此,需要一种文库多样性的度量方法。为此,我们使用标准的化学信息学工具开发了聚糖的线性表示。该表示方法用于测量糖库的成对相似性,并因此用单个值表示糖库的多样性。比较了四个现有的唾液酸聚糖阵列的多样性。通过减少糖的数量,提出了更具多样性的阵列。该算法可应用于文库设计的各个方面,从目标结构的选择到合成用构建块的选择。

相似文献

1
Glycan fingerprints: calculating diversity in glycan libraries.
ACS Chem Biol. 2012 May 18;7(5):829-34. doi: 10.1021/cb300003z. Epub 2012 Mar 9.
2
Implementation of GlycanBuilder to draw a wide variety of ambiguous glycans.
Carbohydr Res. 2017 Jun 5;445:104-116. doi: 10.1016/j.carres.2017.04.015. Epub 2017 Apr 19.
4
Novel Reversible Fluorescent Glycan Linker for Functional Glycomics.
Bioconjug Chem. 2019 Nov 20;30(11):2897-2908. doi: 10.1021/acs.bioconjchem.9b00613. Epub 2019 Oct 25.
5
Glycan microarrays for decoding the glycome.
Annu Rev Biochem. 2011;80:797-823. doi: 10.1146/annurev-biochem-061809-152236.
6
Development and application of an algorithm to compute weighted multiple glycan alignments.
Bioinformatics. 2017 May 1;33(9):1317-1323. doi: 10.1093/bioinformatics/btw827.
7
Preparation and analysis of glycan microarrays.
Curr Protoc Protein Sci. 2011 Apr;Chapter 12:Unit12.10. doi: 10.1002/0471140864.ps1210s64.
8
History and future of shotgun glycomics.
Biochem Soc Trans. 2019 Feb 28;47(1):1-11. doi: 10.1042/BST20170487. Epub 2019 Jan 9.
9
Microbe-focused glycan array screening platform.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):1958-1967. doi: 10.1073/pnas.1800853116. Epub 2019 Jan 22.

引用本文的文献

1
Exposing the molecular heterogeneity of glycosylated biotherapeutics.
Nat Commun. 2024 Apr 16;15(1):3259. doi: 10.1038/s41467-024-47693-8.
2
Glycoinformatics in the Artificial Intelligence Era.
Chem Rev. 2022 Oct 26;122(20):15971-15988. doi: 10.1021/acs.chemrev.2c00110. Epub 2022 Aug 12.
3
Correcting for sparsity and interdependence in glycomics by accounting for glycan biosynthesis.
Nat Commun. 2021 Aug 17;12(1):4988. doi: 10.1038/s41467-021-25183-5.
5
Big-Data Glycomics: Tools to Connect Glycan Biosynthesis to Extracellular Communication.
Trends Biochem Sci. 2021 Apr;46(4):284-300. doi: 10.1016/j.tibs.2020.10.004. Epub 2020 Dec 18.
6
Microbe-focused glycan array screening platform.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):1958-1967. doi: 10.1073/pnas.1800853116. Epub 2019 Jan 22.
7
Finite Dimension: A Mathematical Tool to Analise Glycans.
Sci Rep. 2018 Mar 13;8(1):4426. doi: 10.1038/s41598-018-22575-4.
8
2D and 3D similarity landscape analysis identifies PARP as a novel off-target for the drug Vatalanib.
BMC Bioinformatics. 2015 Sep 24;16:308. doi: 10.1186/s12859-015-0730-x.
9
The challenge and promise of glycomics.
Chem Biol. 2014 Jan 16;21(1):1-15. doi: 10.1016/j.chembiol.2013.12.010.
10
Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection.
PLoS Pathog. 2013 Mar;9(3):e1003223. doi: 10.1371/journal.ppat.1003223. Epub 2013 Mar 14.

本文引用的文献

1
Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic.
J Virol. 2012 Jan;86(2):982-90. doi: 10.1128/JVI.06322-11. Epub 2011 Nov 9.
2
Glycan microarrays for decoding the glycome.
Annu Rev Biochem. 2011;80:797-823. doi: 10.1146/annurev-biochem-061809-152236.
3
Differential receptor binding affinities of influenza hemagglutinins on glycan arrays.
J Am Chem Soc. 2010 Oct 27;132(42):14849-56. doi: 10.1021/ja104657b.
4
Colloquium paper: uniquely human evolution of sialic acid genetics and biology.
Proc Natl Acad Sci U S A. 2010 May 11;107 Suppl 2(Suppl 2):8939-46. doi: 10.1073/pnas.0914634107. Epub 2010 May 5.
5
Glycome-DB.org: a portal for querying across the digital world of carbohydrate sequences.
Glycobiology. 2009 Dec;19(12):1563-7. doi: 10.1093/glycob/cwp137. Epub 2009 Sep 16.
7
GlycoCT-a unifying sequence format for carbohydrates.
Carbohydr Res. 2008 Aug 11;343(12):2162-71. doi: 10.1016/j.carres.2008.03.011. Epub 2008 Mar 13.
10
GLYDE-an expressive XML standard for the representation of glycan structure.
Carbohydr Res. 2005 Dec 30;340(18):2802-7. doi: 10.1016/j.carres.2005.09.019. Epub 2005 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验