Suppr超能文献

带有展示结构多样寡糖的工程噬菌体的糖阵列能够实现聚糖-蛋白质相互作用的高通量检测。

Glycoarrays with engineered phages displaying structurally diverse oligosaccharides enable high-throughput detection of glycan-protein interactions.

作者信息

Çelik Eda, Ollis Anne A, Lasanajak Yi, Fisher Adam C, Gür Göksu, Smith David F, DeLisa Matthew P

机构信息

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA; Department of Chemical Engineering, Hacettepe University, Beytepe, Ankara, Turkey; Bioengineering Division, Institute of Science, Hacettepe University, Beytepe, Ankara, Turkey.

出版信息

Biotechnol J. 2015 Jan;10(1):199-209. doi: 10.1002/biot.201400354. Epub 2014 Oct 31.

Abstract

Glycan microarrays have become a powerful platform to investigate the interactions of carbohydrates with a variety of biomolecules. However, the number and diversity of glycans available for use in such arrays represent a key bottleneck in glycan array fabrication. To address this challenge, we describe a novel glycan array platform based on surface patterning of engineered glycophages that display unique carbohydrate epitopes. Specifically, we show that glycophages are compatible with surface immobilization procedures and that phage-displayed oligosaccharides retain the ability to be recognized by different glycan-binding proteins (e.g. antibodies and lectins) after immobilization. A key advantage of glycophage arrays is that large quantities of glycophages can be produced biosynthetically from recombinant bacteria and isolated directly from bacterial supernatants without laborious purification steps. Taken together, the glycophage array technology described here should help to expand the diversity of glycan libraries and provide a complement to the existing toolkit for high-throughput analysis of glycan-protein interactions.

摘要

聚糖微阵列已成为研究碳水化合物与多种生物分子相互作用的强大平台。然而,可用于此类阵列的聚糖数量和多样性是聚糖阵列制备中的一个关键瓶颈。为应对这一挑战,我们描述了一种基于工程化糖噬菌体表面图案化的新型聚糖阵列平台,该糖噬菌体展示独特的碳水化合物表位。具体而言,我们表明糖噬菌体与表面固定程序兼容,并且噬菌体展示的寡糖在固定后仍保留被不同聚糖结合蛋白(如抗体和凝集素)识别的能力。糖噬菌体阵列的一个关键优势是可以通过重组细菌生物合成大量糖噬菌体,并直接从细菌上清液中分离出来,无需繁琐的纯化步骤。综上所述,本文所述的糖噬菌体阵列技术应有助于扩大聚糖文库的多样性,并为现有的聚糖 - 蛋白质相互作用高通量分析工具包提供补充。

相似文献

2
Introducing glycophage arrays: facile production, purification and patterning of glycophages.
Biotechnol J. 2015 Jan;10(1):20-1. doi: 10.1002/biot.201400591. Epub 2014 Oct 31.
3
Fluorescent glycan derivatives: their use for natural glycan microarrays.
ACS Chem Biol. 2009 Sep 18;4(9):699-701. doi: 10.1021/cb9002078.
4
History and future of shotgun glycomics.
Biochem Soc Trans. 2019 Feb 28;47(1):1-11. doi: 10.1042/BST20170487. Epub 2019 Jan 9.
5
Glycan array: a powerful tool for glycomics studies.
Expert Rev Proteomics. 2009 Dec;6(6):631-45. doi: 10.1586/epr.09.82.
6
Microbe-focused glycan array screening platform.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):1958-1967. doi: 10.1073/pnas.1800853116. Epub 2019 Jan 22.
7
Recombinant lectin microarrays for glycomic analysis.
Methods Mol Biol. 2011;723:67-77. doi: 10.1007/978-1-61779-043-0_6.
8
Cross-comparison of protein recognition of sialic acid diversity on two novel sialoglycan microarrays.
J Biol Chem. 2012 Jun 29;287(27):22593-608. doi: 10.1074/jbc.M112.359323. Epub 2012 May 1.
9
Glycan and lectin microarrays for glycomics and medicinal applications.
Med Res Rev. 2010 Mar;30(2):394-418. doi: 10.1002/med.20195.
10
Use of glycan microarrays to explore specificity of glycan-binding proteins.
Methods Enzymol. 2010;480:417-44. doi: 10.1016/S0076-6879(10)80033-3.

引用本文的文献

1
Measuring carbohydrate recognition profile of lectins on live cells using liquid glycan array (LiGA).
Nat Protoc. 2025 Apr;20(4):989-1019. doi: 10.1038/s41596-024-01070-3. Epub 2024 Oct 16.
2
Rapid biosynthesis of glycoprotein therapeutics and vaccines from freeze-dried bacterial cell lysates.
Nat Protoc. 2023 Jul;18(7):2374-2398. doi: 10.1038/s41596-022-00799-z. Epub 2023 Jun 16.
3
A low-cost recombinant glycoconjugate vaccine confers immunogenicity and protection against enterotoxigenic infections in mice.
Front Mol Biosci. 2023 Mar 2;10:1085887. doi: 10.3389/fmolb.2023.1085887. eCollection 2023.
4
A Low-Cost, Thermostable, Cell-Free Protein Synthesis Platform for On-Demand Production of Conjugate Vaccines.
ACS Synth Biol. 2023 Jan 20;12(1):95-107. doi: 10.1021/acssynbio.2c00392. Epub 2022 Dec 22.
5
Genetically encoded multivalent liquid glycan array displayed on M13 bacteriophage.
Nat Chem Biol. 2021 Jul;17(7):806-816. doi: 10.1038/s41589-021-00788-5. Epub 2021 May 6.
6
On-demand biomanufacturing of protective conjugate vaccines.
Sci Adv. 2021 Feb 3;7(6). doi: 10.1126/sciadv.abe9444. Print 2021 Feb.
7
Emergence and significance of carbohydrate-specific antibodies.
Genes Immun. 2020 Aug;21(4):224-239. doi: 10.1038/s41435-020-0105-9. Epub 2020 Aug 5.
8
Microarray Strategies for Exploring Bacterial Surface Glycans and Their Interactions With Glycan-Binding Proteins.
Front Microbiol. 2020 Jan 10;10:2909. doi: 10.3389/fmicb.2019.02909. eCollection 2019.
9
Emerging facets of prokaryotic glycosylation.
FEMS Microbiol Rev. 2017 Jan;41(1):49-91. doi: 10.1093/femsre/fuw036. Epub 2016 Aug 26.

本文引用的文献

1
Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity.
Nat Chem Biol. 2014 Oct;10(10):816-22. doi: 10.1038/nchembio.1609. Epub 2014 Aug 17.
2
Microbial glycan microarrays define key features of host-microbial interactions.
Nat Chem Biol. 2014 Jun;10(6):470-6. doi: 10.1038/nchembio.1525. Epub 2014 May 11.
3
Chemistry of natural glycan microarrays.
Curr Opin Chem Biol. 2014 Feb;18:70-7. doi: 10.1016/j.cbpa.2014.01.001. Epub 2014 Jan 30.
4
Using glycan microarrays to understand immunity.
Curr Opin Chem Biol. 2014 Feb;18:55-61. doi: 10.1016/j.cbpa.2013.12.017. Epub 2014 Jan 29.
6
Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation.
Trends Biotechnol. 2013 May;31(5):313-23. doi: 10.1016/j.tibtech.2013.03.003. Epub 2013 Apr 11.
7
Glycans-by-design: engineering bacteria for the biosynthesis of complex glycans and glycoconjugates.
Biotechnol Bioeng. 2013 Jun;110(6):1550-64. doi: 10.1002/bit.24885. Epub 2013 Mar 26.
8
Carbohydrate microarrays.
Chem Soc Rev. 2013 May 21;42(10):4310-26. doi: 10.1039/c2cs35401b. Epub 2012 Nov 28.
9
An engineered eukaryotic protein glycosylation pathway in Escherichia coli.
Nat Chem Biol. 2012 Mar 25;8(5):434-6. doi: 10.1038/nchembio.921.
10
Recent advances and future challenges in glycan microarray technology.
Methods Mol Biol. 2012;808:1-12. doi: 10.1007/978-1-61779-373-8_1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验