Suppr超能文献

磷脂酰肌醇-4,5-二磷酸(PI(4,5)P(2))在囊泡胞吐作用和膜融合中的作用

Role of PI(4,5)P(2) in vesicle exocytosis and membrane fusion.

作者信息

Martin Thomas F J

机构信息

Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, 53706, Madison, WI, U.S.A,

出版信息

Subcell Biochem. 2012;59:111-30. doi: 10.1007/978-94-007-3015-1_4.

Abstract

A role for phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in membrane fusion was originally identified for regulated dense-core vesicle exocytosis in neuroendocrine cells. Subsequent studies demonstrated essential roles for PI(4,5)P(2) in regulated synaptic vesicle and constitutive vesicle exocytosis. For regulated dense-core vesicle exocytosis, PI(4,5)P(2) appears to be primarily required for priming, a stage in vesicle exocytosis that follows vesicle docking and precedes Ca(2) (+)-triggered fusion. The priming step involves the organization of SNARE protein complexes for fusion. A central issue concerns the mechanisms by which PI(4,5)P(2) exerts an essential role in membrane fusion events at the plasma membrane. The observed microdomains of PI(4,5)P(2) in the plasma membrane of neuroendocrine cells at fusion sites has suggested possible direct effects of the phosphoinositide on membrane curvature and tension. More likely, PI(4,5)P(2) functions in vesicle exocytosis as in other cellular processes to recruit and activate PI(4,5)P(2)-binding proteins. CAPS and Munc13 proteins, which bind PI(4,5)P(2) and function in vesicle priming to organize SNARE proteins, are key candidates as effectors for the role of PI(4,5)P(2) in vesicle priming. Consistent with roles prior to fusion that affect SNARE function, subunits of the exocyst tethering complex involved in constitutive vesicle exocytosis also bind PI(4,5)P(2). Additional roles for PI(4,5)P(2) in fusion pore dilation have been described, which may involve other PI(4,5)P(2)-binding proteins such as synaptotagmin. Lastly, the SNARE proteins that mediate exocytic vesicle fusion contain highly basic membrane-proximal domains that interact with acidic phospholipids that likely affect their function.

摘要

磷脂酰肌醇4,5-二磷酸(PI(4,5)P(2))在膜融合中的作用最初是在神经内分泌细胞的调节性致密核心囊泡胞吐作用中被发现的。随后的研究表明PI(4,5)P(2)在调节性突触囊泡和组成型囊泡胞吐作用中起着重要作用。对于调节性致密核心囊泡胞吐作用,PI(4,5)P(2)似乎主要在引发过程中是必需的,引发是囊泡胞吐作用中的一个阶段,发生在囊泡对接之后且在Ca(2+)触发融合之前。引发步骤涉及用于融合的SNARE蛋白复合物的组装。一个核心问题是PI(4,5)P(2)在质膜处的膜融合事件中发挥重要作用的机制。在神经内分泌细胞融合位点的质膜中观察到的PI(4,5)P(2)微区表明磷酸肌醇对膜曲率和张力可能有直接影响。更有可能的是,PI(4,5)P(2)在囊泡胞吐作用中的功能与在其他细胞过程中一样,是招募和激活PI(4,5)P(2)结合蛋白。CAPS和Munc13蛋白结合PI(4,5)P(2)并在囊泡引发过程中发挥作用以组装SNARE蛋白,它们是PI(4,5)P(2)在囊泡引发中作用的关键效应子候选者。与影响SNARE功能的融合前作用一致,参与组成型囊泡胞吐作用的外排栓系复合物亚基也结合PI(4,5)P(2)。PI(4,5)P(2)在融合孔扩张中的其他作用也已被描述,这可能涉及其他PI(4,5)P(2)结合蛋白,如突触结合蛋白。最后,介导胞吐囊泡融合的SNARE蛋白含有高度碱性的膜近端结构域,该结构域与可能影响其功能的酸性磷脂相互作用。

相似文献

1
Role of PI(4,5)P(2) in vesicle exocytosis and membrane fusion.
Subcell Biochem. 2012;59:111-30. doi: 10.1007/978-94-007-3015-1_4.
2
PI(4,5)P₂-binding effector proteins for vesicle exocytosis.
Biochim Biophys Acta. 2015 Jun;1851(6):785-93. doi: 10.1016/j.bbalip.2014.09.017. Epub 2014 Oct 2.
3
CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17308-13. doi: 10.1073/pnas.0900755106. Epub 2009 Sep 29.
4
CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis.
Mol Biol Cell. 2014 Feb;25(4):508-21. doi: 10.1091/mbc.E12-11-0829. Epub 2013 Dec 19.
5
Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion.
J Cell Biol. 2008 Jul 28;182(2):355-66. doi: 10.1083/jcb.200801056. Epub 2008 Jul 21.
6
Synaptotagmin C2A loop 2 mediates Ca2+-dependent SNARE interactions essential for Ca2+-triggered vesicle exocytosis.
Mol Biol Cell. 2007 Dec;18(12):4957-68. doi: 10.1091/mbc.e07-04-0368. Epub 2007 Oct 3.
7
Resident CAPS on dense-core vesicles docks and primes vesicles for fusion.
Mol Biol Cell. 2016 Feb 15;27(4):654-68. doi: 10.1091/mbc.E15-07-0509. Epub 2015 Dec 23.
8
PI(4,5)P-dependent regulation of exocytosis by amisyn, the vertebrate-specific competitor of synaptobrevin 2.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13468-13479. doi: 10.1073/pnas.1908232117. Epub 2020 May 28.
9
Munc13 homology domain-1 in CAPS/UNC31 mediates SNARE binding required for priming vesicle exocytosis.
Cell Metab. 2011 Aug 3;14(2):254-63. doi: 10.1016/j.cmet.2011.07.002.

引用本文的文献

1
Cellular mechanisms of hormone secretion in neuroendocrine tumors: what goes wrong?
Front Cell Dev Biol. 2025 Jul 1;13:1527083. doi: 10.3389/fcell.2025.1527083. eCollection 2025.
3
PI(4,5)P is a master regulator for Ca-triggered vesicle exocytosis.
Biochim Biophys Acta Mol Cell Biol Lipids. 2025 Aug;1870(6):159651. doi: 10.1016/j.bbalip.2025.159651. Epub 2025 Jun 20.
4
Navigating the neuronal recycling bin: Another look at huntingtin in coordinating autophagy.
Autophagy Rep. 2025 Jun 2;4(1):2472450. doi: 10.1080/27694127.2025.2472450. eCollection 2025.
5
Single-Vesicle Microelectroanalysis Reveals the Role of PIP2 Phospholipid in Vesicle Opening Dynamics and Its Potential Role in Exocytosis.
ACS Omega. 2025 May 1;10(18):18889-18898. doi: 10.1021/acsomega.5c00864. eCollection 2025 May 13.
6
Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm.
Front Cell Dev Biol. 2024 Sep 23;12:1457638. doi: 10.3389/fcell.2024.1457638. eCollection 2024.
7
MTM1-mediated production of phosphatidylinositol 5-phosphate fuels the formation of podosome-like protrusions regulating myoblast fusion.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2217971121. doi: 10.1073/pnas.2217971121. Epub 2024 May 28.
8
MARCKS and PI(4,5)P reciprocally regulate actin-based dendritic spine morphology.
Mol Biol Cell. 2024 Feb 1;35(2):ar23. doi: 10.1091/mbc.E23-09-0370. Epub 2023 Dec 13.
9
PLCγ1 in dopamine neurons critically regulates striatal dopamine release via VMAT2 and synapsin III.
Exp Mol Med. 2023 Nov;55(11):2357-2375. doi: 10.1038/s12276-023-01104-y. Epub 2023 Nov 1.
10
Redox-Mediated Rewiring of Signalling Pathways: The Role of a Cellular Clock in Brain Health and Disease.
Antioxidants (Basel). 2023 Oct 17;12(10):1873. doi: 10.3390/antiox12101873.

本文引用的文献

2
Polarized TIRFM reveals changes in plasma membrane topology before and during granule fusion.
Cell Mol Neurobiol. 2010 Nov;30(8):1343-9. doi: 10.1007/s10571-010-9590-0.
3
Two distinct secretory vesicle-priming steps in adrenal chromaffin cells.
J Cell Biol. 2010 Sep 20;190(6):1067-77. doi: 10.1083/jcb.201001164.
5
Imaging signal transduction during phagocytosis: phospholipids, surface charge, and electrostatic interactions.
Am J Physiol Cell Physiol. 2010 Nov;299(5):C876-81. doi: 10.1152/ajpcell.00342.2010. Epub 2010 Aug 25.
6
Dynamic control of neuroexocytosis by phosphoinositides in health and disease.
Prog Lipid Res. 2011 Jan;50(1):52-61. doi: 10.1016/j.plipres.2010.08.001. Epub 2010 Aug 10.
7
Protein-driven membrane stresses in fusion and fission.
Trends Biochem Sci. 2010 Dec;35(12):699-706. doi: 10.1016/j.tibs.2010.06.003. Epub 2010 Jul 16.
8
Translation of the phosphoinositide code by PI effectors.
Nat Chem Biol. 2010 Jul;6(7):507-13. doi: 10.1038/nchembio.390.
9
Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin.
J Biol Chem. 2010 Jul 30;285(31):23665-75. doi: 10.1074/jbc.M109.096073. Epub 2010 Jun 2.
10
Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis.
Nat Struct Mol Biol. 2010 Mar;17(3):280-8. doi: 10.1038/nsmb.1758. Epub 2010 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验