European Neuroscience Institute Göttingen, University Medical Center Göttingen and the Max-Planck Society, 37077 Göttingen, Germany.
Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13468-13479. doi: 10.1073/pnas.1908232117. Epub 2020 May 28.
The functions of nervous and neuroendocrine systems rely on fast and tightly regulated release of neurotransmitters stored in secretory vesicles through SNARE-mediated exocytosis. Few proteins, including tomosyn (STXBP5) and amisyn (STXBP6), were proposed to negatively regulate exocytosis. Little is known about amisyn, a 24-kDa brain-enriched protein with a SNARE motif. We report here that full-length amisyn forms a stable SNARE complex with syntaxin-1 and SNAP-25 through its C-terminal SNARE motif and competes with synaptobrevin-2/VAMP2 for the SNARE-complex assembly. Furthermore, amisyn contains an N-terminal pleckstrin homology domain that mediates its transient association with the plasma membrane of neurosecretory cells by binding to phospholipid PI(4,5)P However, unlike synaptrobrevin-2, the SNARE motif of amisyn is not sufficient to account for the role of amisyn in exocytosis: Both the pleckstrin homology domain and the SNARE motif are needed for its inhibitory function. Mechanistically, amisyn interferes with the priming of secretory vesicles and the sizes of releasable vesicle pools, but not vesicle fusion properties. Our biochemical and functional analyses of this vertebrate-specific protein unveil key aspects of negative regulation of exocytosis.
神经和神经内分泌系统的功能依赖于通过 SNARE 介导的胞吐作用快速且严格调节储存于分泌小泡中的神经递质的释放。一些蛋白,包括 tomosyn(STXBP5)和 amisyn(STXBP6),被提出可负向调节胞吐作用。关于 amisyn(一种 24kDa 的富含脑的蛋白,具有 SNARE 基序),人们知之甚少。我们在此报告全长的 amisyn 通过其 C 末端 SNARE 基序与 syntaxin-1 和 SNAP-25 形成稳定的 SNARE 复合物,并与 synaptobrevin-2/VAMP2 竞争 SNARE 复合物的组装。此外,amisyin 含有一个 N 端 pleckstrin 同源结构域,通过与质膜上的 PI(4,5)P 结合介导其与神经分泌细胞质膜的瞬时关联。然而,与 synaptrobrevin-2 不同的是,amisyin 的 SNARE 基序不足以解释其在胞吐作用中的作用:pleckstrin 同源结构域和 SNARE 基序都需要其抑制功能。在机制上,amisyin 干扰了分泌小泡的引发和可释放的小泡池的大小,但不影响小泡融合特性。我们对这种脊椎动物特异性蛋白的生化和功能分析揭示了胞吐作用负向调节的关键方面。