Suppr超能文献

通过明确的价态实现自然极化率和柔韧性:以水为例。

Natural polarizability and flexibility via explicit valency: the case of water.

机构信息

Graduate Program in Biophysics and Structural Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.

出版信息

J Chem Phys. 2012 Feb 28;136(8):084109. doi: 10.1063/1.3688228.

Abstract

As the dominant physiological solvent, water drives the folding of biological macromolecules, influences conformational changes, determines the ionization states of surface groups, actively participates in catalytic events, and provides "wires" for long-range proton transfer. Elucidation of all these roles calls for atomistic simulations. However, currently available methods do not lend themselves to efficient simulation of proton transfer events, or even polarizability and flexibility. Here, we report that an explicit account of valency can provide a unified description for the polarizability, flexibility, and dissociability of water in one intuitive and efficient setting. We call this approach LEWIS, after the chemical theory that inspires the use of valence electron pairs. In this paper, we provide details of the method, the choice of the training set, and predictions for the neat ambient liquid, with emphasis on structure, dynamics, and polarization. LEWIS water provides a good description of bulk properties, and dipolar and quadrupolar responses.

摘要

作为主要的生理溶剂,水驱动生物大分子的折叠,影响构象变化,决定表面基团的离解状态,积极参与催化事件,并为长程质子转移提供“导线”。要阐明所有这些作用都需要原子模拟。然而,目前可用的方法并不适合于有效地模拟质子转移事件,甚至不适合于极化率和柔韧性。在这里,我们报告说,价的明确说明可以在一个直观和有效的设置中为水的极化率、柔韧性和离解性提供统一的描述。我们将这种方法称为 LEWIS,以启发使用价电子对的化学理论命名。在本文中,我们提供了该方法的详细信息、训练集的选择以及对纯净环境液体的预测,重点是结构、动力学和极化。LEWIS 水对体相性质、偶极和四极响应提供了很好的描述。

相似文献

1
Natural polarizability and flexibility via explicit valency: the case of water.
J Chem Phys. 2012 Feb 28;136(8):084109. doi: 10.1063/1.3688228.
2
Structure, dynamics and reactions of protein hydration water.
Philos Trans R Soc Lond B Biol Sci. 2004 Aug 29;359(1448):1181-9; discussion 1189-90. doi: 10.1098/rstb.2004.1497.
7
8
Modeling Electronic Polarizability Changes in the Course of a Magnesium Ion Water Ligand Exchange Process.
J Phys Chem B. 2015 Aug 13;119(32):10275-86. doi: 10.1021/acs.jpcb.5b01295. Epub 2015 Jul 31.
10
Computer simulation of proton solvation and transport in aqueous and biomolecular systems.
Acc Chem Res. 2006 Feb;39(2):143-50. doi: 10.1021/ar0402098.

引用本文的文献

1
I‑GAT: Interpretable Graph Attention Networks for Ligand Optimization.
ACS Omega. 2025 Jul 21;10(30):32968-32986. doi: 10.1021/acsomega.5c02173. eCollection 2025 Aug 5.
3
On the Choice of Different Water Model in Molecular Dynamics Simulations of Nanopore Transport Phenomena.
Membranes (Basel). 2022 Nov 7;12(11):1109. doi: 10.3390/membranes12111109.
4
A Carbon Is a Carbon Is a Carbon: Orbital-Free Simulations of Hydrocarbon Chemistry without Resort to Atom Types.
J Phys Chem A. 2022 Nov 17;126(45):8468-8475. doi: 10.1021/acs.jpca.2c05338. Epub 2022 Nov 4.
5
Chemistry with semi-classical electrons: reaction trajectories auto-generated by sub-atomistic force fields.
Chem Sci. 2017 Jun 1;8(6):4203-4210. doi: 10.1039/c7sc01181d. Epub 2017 Apr 19.
6
Accuracy limit of rigid 3-point water models.
J Chem Phys. 2016 Aug 21;145(7):074501. doi: 10.1063/1.4960175.
7
Surface Propensities of the Self-Ions of Water.
ACS Cent Sci. 2016 Apr 27;2(4):225-31. doi: 10.1021/acscentsci.6b00013. Epub 2016 Mar 28.
8
Building Water Models: A Different Approach.
J Phys Chem Lett. 2014 Nov 6;5(21):3863-3871. doi: 10.1021/jz501780a. Epub 2014 Oct 16.
9
Transferable pseudoclassical electrons for aufbau of atomic ions.
J Comput Chem. 2014 Jun 5;35(15):1159-64. doi: 10.1002/jcc.23612. Epub 2014 Apr 21.
10
Point charges optimally placed to represent the multipole expansion of charge distributions.
PLoS One. 2013 Jul 4;8(7):e67715. doi: 10.1371/journal.pone.0067715. Print 2013.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Lewis-inspired representation of dissociable water in clusters and Grotthuss chains.
J Biol Phys. 2012 Jan;38(1):49-59. doi: 10.1007/s10867-011-9229-5. Epub 2011 Jun 4.
3
Pairwise long-range compensation for strongly ionic systems.
J Chem Theory Comput. 2011 Nov 8;7(11):3620-3624. doi: 10.1021/ct200392u.
5
Current status of the AMOEBA polarizable force field.
J Phys Chem B. 2010 Mar 4;114(8):2549-64. doi: 10.1021/jp910674d.
6
A multistate empirical valence bond model for solvation and transport simulations of OH- in aqueous solutions.
Phys Chem Chem Phys. 2009 Nov 7;11(41):9420-30. doi: 10.1039/b907859b. Epub 2009 Aug 27.
7
Observation of a Zundel-like transition state during proton transfer in aqueous hydroxide solutions.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15154-9. doi: 10.1073/pnas.0901571106. Epub 2009 Jul 31.
8
Competing quantum effects in the dynamics of a flexible water model.
J Chem Phys. 2009 Jul 14;131(2):024501. doi: 10.1063/1.3167790.
10
On the range of water structure models compatible with X-ray and neutron diffraction data.
J Phys Chem B. 2009 May 7;113(18):6246-55. doi: 10.1021/jp9007619.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验