Suppr超能文献

用于校准单分子视频跟踪仪器的功率谱和阿伦方差方法。

Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments.

作者信息

Lansdorp Bob M, Saleh Omar A

机构信息

Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA.

出版信息

Rev Sci Instrum. 2012 Feb;83(2):025115. doi: 10.1063/1.3687431.

Abstract

Single-molecule manipulation instruments, such as optical traps and magnetic tweezers, frequently use video tracking to measure the position of a force-generating probe. The instruments are calibrated by comparing the measured probe motion to a model of Brownian motion in a harmonic potential well; the results of calibration are estimates of the probe drag, α, and spring constant, κ. Here, we present both time- and frequency-domain methods to accurately and precisely extract α and κ from the probe trajectory. In the frequency domain, we discuss methods to estimate the power spectral density (PSD) from data (including windowing and blocking), and we derive an analytical formula for the PSD which accounts both for aliasing and the filtering intrinsic to video tracking. In the time domain, we focus on the Allan variance (AV): we present a theoretical equation for the AV relevant to typical single-molecule setups and discuss the optimal manner for computing the AV from experimental data using octave-sampled overlapping bins. We show that, when using maximum-likelihood methods to fit to the data, both the PSD and AV approaches can extract α and κ in an unbiased and low-error manner, though the AV approach is simpler and more robust.

摘要

单分子操纵仪器,如光镊和磁镊,经常使用视频跟踪来测量产生力的探针的位置。通过将测量到的探针运动与谐波势阱中的布朗运动模型进行比较来校准仪器;校准结果是探针阻力α和弹簧常数κ的估计值。在这里,我们提出了时域和频域方法,以准确、精确地从探针轨迹中提取α和κ。在频域中,我们讨论了从数据中估计功率谱密度(PSD)的方法(包括加窗和分块),并推导了一个考虑了混叠和视频跟踪固有滤波的PSD解析公式。在时域中,我们关注阿伦方差(AV):我们给出了与典型单分子设置相关的AV理论方程,并讨论了使用倍频程采样重叠区间从实验数据计算AV的最佳方式。我们表明,当使用最大似然方法拟合数据时,PSD和AV方法都可以以无偏且低误差的方式提取α和κ,尽管AV方法更简单、更稳健。

相似文献

2
Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments.
PLoS One. 2021 Dec 31;16(12):e0262028. doi: 10.1371/journal.pone.0262028. eCollection 2021.
3
Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data.
Biophys J. 2010 Aug 9;99(4):1292-302. doi: 10.1016/j.bpj.2010.06.008.
6
Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise.
Phys Rev Lett. 2011 Nov 25;107(22):228301. doi: 10.1103/PhysRevLett.107.228301. Epub 2011 Nov 21.
7
Stability variances: a filter approach.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 May;57(5):1011-28. doi: 10.1109/TUFFC.2010.1513.
8
Single-molecule force spectroscopy using the NanoTracker optical tweezers platform: from design to application.
Curr Pharm Biotechnol. 2009 Aug;10(5):467-73. doi: 10.2174/138920109788922164.
9
Correction-free force calibration for magnetic tweezers experiments.
Sci Rep. 2018 Oct 29;8(1):15920. doi: 10.1038/s41598-018-34360-4.
10
Quantifying Instrumental Artifacts in Folding Kinetics Measured by Single-Molecule Force Spectroscopy.
Biophys J. 2016 Jul 26;111(2):283-286. doi: 10.1016/j.bpj.2016.06.011. Epub 2016 Jun 29.

引用本文的文献

1
Accurate drift-invariant single-molecule force calibration using the Hadamard variance.
Biophys J. 2024 Nov 19;123(22):3964-3976. doi: 10.1016/j.bpj.2024.10.008. Epub 2024 Oct 29.
2
Optimal calibration of optical tweezers with arbitrary integration time and sampling frequencies: a general framework [Invited].
Biomed Opt Express. 2023 Nov 28;14(12):6442-6469. doi: 10.1364/BOE.495468. eCollection 2023 Dec 1.
3
Temperature-Dependent Twist of Double-Stranded RNA Probed by Magnetic Tweezer Experiments and Molecular Dynamics Simulations.
J Phys Chem B. 2024 Jan 25;128(3):664-675. doi: 10.1021/acs.jpcb.3c06280. Epub 2024 Jan 10.
4
Single-molecule force stability of the SARS-CoV-2-ACE2 interface in variants-of-concern.
Nat Nanotechnol. 2024 Mar;19(3):399-405. doi: 10.1038/s41565-023-01536-7. Epub 2023 Nov 27.
5
A conformational transition of the D'D3 domain primes von Willebrand factor for multimerization.
Blood Adv. 2022 Sep 13;6(17):5198-5209. doi: 10.1182/bloodadvances.2022006978.
7
Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments.
PLoS One. 2021 Dec 31;16(12):e0262028. doi: 10.1371/journal.pone.0262028. eCollection 2021.
8
On-chip transporting arresting and characterizing individual nano-objects in biological ionic liquids.
Sci Adv. 2021 Jul 2;7(27). doi: 10.1126/sciadv.abd8758. Print 2021 Jul.
9
Molecular structure, DNA binding mode, photophysical properties and recommendations for use of SYBR Gold.
Nucleic Acids Res. 2021 May 21;49(9):5143-5158. doi: 10.1093/nar/gkab265.
10
Ultrahigh numerical aperture meta-fibre for flexible optical trapping.
Light Sci Appl. 2021 Mar 15;10(1):57. doi: 10.1038/s41377-021-00491-z.

本文引用的文献

1
Real-time particle tracking at 10,000 fps using optical fiber illumination.
Opt Express. 2010 Oct 25;18(22):22722-33. doi: 10.1364/OE.18.022722.
2
Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data.
Biophys J. 2010 Aug 9;99(4):1292-302. doi: 10.1016/j.bpj.2010.06.008.
4
Stability variances: a filter approach.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 May;57(5):1011-28. doi: 10.1109/TUFFC.2010.1513.
5
Quantifying noise in optical tweezers by allan variance.
Opt Express. 2009 Jul 20;17(15):13255-69. doi: 10.1364/oe.17.013255.
7
Torsional stiffness of single superparamagnetic microspheres in an external magnetic field.
Phys Rev Lett. 2009 Jan 16;102(2):028302. doi: 10.1103/PhysRevLett.102.028302. Epub 2009 Jan 13.
9
Multiplexed single-molecule measurements with magnetic tweezers.
Rev Sci Instrum. 2008 Sep;79(9):094301. doi: 10.1063/1.2981687.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验