Plidschun Malte, Ren Haoran, Kim Jisoo, Förster Ronny, Maier Stefan A, Schmidt Markus A
Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745, Jena, Germany.
Light Sci Appl. 2021 Mar 15;10(1):57. doi: 10.1038/s41377-021-00491-z.
Strong focusing on diffraction-limited spots is essential for many photonic applications and is particularly relevant for optical trapping; however, all currently used approaches fail to simultaneously provide flexible transportation of light, straightforward implementation, compatibility with waveguide circuitry, and strong focusing. Here, we demonstrate the design and 3D nanoprinting of an ultrahigh numerical aperture meta-fibre for highly flexible optical trapping. Taking into account the peculiarities of the fibre environment, we implemented an ultrathin meta-lens on the facet of a modified single-mode optical fibre via direct laser writing, leading to a diffraction-limited focal spot with a record-high numerical aperture of up to NA ≈ 0.9. The unique capabilities of this flexible, cost-effective, bio- and fibre-circuitry-compatible meta-fibre device were demonstrated by optically trapping microbeads and bacteria for the first time with only one single-mode fibre in combination with diffractive optics. Our study highlights the relevance of the unexplored but exciting field of meta-fibre optics to a multitude of fields, such as bioanalytics, quantum technology and life sciences.
对于许多光子应用而言,将光强聚焦于衍射极限光斑至关重要,在光学捕获方面尤为关键;然而,目前所有的方法都无法同时实现光的灵活传输、简单易行的实现方式、与波导电路的兼容性以及强聚焦。在此,我们展示了一种用于高度灵活光学捕获的超高数值孔径超材料光纤的设计与三维纳米打印。考虑到光纤环境的特殊性,我们通过直接激光写入在改性单模光纤的端面上实现了一个超薄超材料透镜,从而得到了一个衍射极限焦点,其数值孔径高达NA ≈ 0.9,创历史新高。通过首次仅使用一根单模光纤结合衍射光学器件对微珠和细菌进行光学捕获,证明了这种灵活、经济高效、与生物及光纤电路兼容的超材料光纤器件的独特能力。我们的研究突出了超材料光纤光学这个尚未探索但令人兴奋的领域与众多领域的相关性,如生物分析、量子技术和生命科学。