Suppr超能文献

关注变异株中 SARS-CoV-2-ACE2 界面的单分子力稳定性。

Single-molecule force stability of the SARS-CoV-2-ACE2 interface in variants-of-concern.

机构信息

Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany.

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

出版信息

Nat Nanotechnol. 2024 Mar;19(3):399-405. doi: 10.1038/s41565-023-01536-7. Epub 2023 Nov 27.

Abstract

Mutations in SARS-CoV-2 have shown effective evasion of population immunity and increased affinity to the cellular receptor angiotensin-converting enzyme 2 (ACE2). However, in the dynamic environment of the respiratory tract, forces act on the binding partners, which raises the question of whether not only affinity but also force stability of the SARS-CoV-2-ACE2 interaction might be a selection factor for mutations. Using magnetic tweezers, we investigate the impact of amino acid substitutions in variants of concern (Alpha, Beta, Gamma and Delta) and on force-stability and bond kinetic of the receptor-binding domain-ACE2 interface at a single-molecule resolution. We find a higher affinity for all of the variants of concern (>fivefold) compared with the wild type. In contrast, Alpha is the only variant of concern that shows higher force stability (by 17%) compared with the wild type. Using molecular dynamics simulations, we rationalize the mechanistic molecular origins of this increase in force stability. Our study emphasizes the diversity of contributions to the transmissibility of variants and establishes force stability as one of the several factors for fitness. Understanding fitness advantages opens the possibility for the prediction of probable mutations, allowing a rapid adjustment of therapeutics, vaccines and intervention measures.

摘要

SARS-CoV-2 的突变已显示出有效逃避人群免疫,并增加了与细胞受体血管紧张素转化酶 2(ACE2)的亲和力。然而,在呼吸道的动态环境中,各种力量作用于结合伴侣,这就提出了一个问题,即不仅亲和力,而且 SARS-CoV-2-ACE2 相互作用的力稳定性是否可能是突变的选择因素。我们使用磁镊,以单分子分辨率研究了在关注变体(Alpha、Beta、Gamma 和 Delta)以及受体结合域-ACE2 界面的力稳定性和键动力学上的氨基酸取代的影响。我们发现所有关注变体的亲和力都比野生型高(>五倍)。相比之下,Alpha 是唯一一种与野生型相比显示出更高力稳定性(增加 17%)的关注变体。我们使用分子动力学模拟,从力学分子角度解释了这种力稳定性增加的机制起源。我们的研究强调了变体传播多样性的贡献,并确立了力稳定性作为适应性的几个因素之一。了解适应性优势为可能的突变预测开辟了可能性,从而可以快速调整治疗方法、疫苗和干预措施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验