Suppr超能文献

医学加速器离子源综述(特邀)

A review of ion sources for medical accelerators (invited).

作者信息

Muramatsu M, Kitagawa A

机构信息

National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.

出版信息

Rev Sci Instrum. 2012 Feb;83(2):02B909. doi: 10.1063/1.3671744.

Abstract

There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespread since the 1990s. The energy and intensity are typically over 200 MeV and several 10(10) pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV∕u. Although the beam intensity depends on the irradiation method, it is typically several 10(8) or 10(9) pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are under development for the boron neutron capture therapy. This treatment is conventionally demonstrated by a nuclear reactor, but it is strongly expected to replace the reactor by the accelerator. We report status of ion source for medical application and such scope for further developments.

摘要

离子加速器有两个主要的医学应用。一个是生产用于正电子发射断层扫描和单光子发射计算机断层扫描的放射性核素成像的短寿命同位素。一般来说,负离子源(通常是H-和/或D-)和回旋加速器组合使用;这个系统已经成熟并在世界各地广泛分布。另一个重要的医学应用是带电粒子放射治疗,其中加速的离子束本身被用于治疗患者。正在应用两种截然不同的方法:质子或重离子(主要是碳离子)。自20世纪90年代以来,深部肿瘤的质子放射治疗已广泛应用。能量和强度通常分别超过200兆电子伏特和几×10¹⁰每秒脉冲数。回旋加速器和同步加速器都有使用。回旋加速器的离子源通常与生产放射性同位素的类型相似。对于同步加速器,则应用正离子源与注入直线加速器组合。碳离子放射治疗引起了全球关注。日本国立放射科学研究所千叶重离子医学加速器已经用碳束治疗了约6000名癌症患者。这些临床结果已经清楚地证实了碳离子的优势。海德堡离子治疗中心和群马大学重离子医学中心已成功启用。几个新设施正在调试或建设中。束流能量根据肿瘤深度进行调整。通常在140至430兆电子伏特每核子之间。虽然束流强度取决于照射方法,但通常是几×10⁸或10⁹每秒脉冲数。同步加速器仅用于碳离子放射治疗。一个电子回旋共振离子源为此需求提供多电荷碳离子。离子束的一些其他医学应用也引起了开发者的兴趣。例如,几种类型的加速器正在为硼中子俘获疗法进行研发。这种治疗传统上由核反应堆进行,但人们强烈期望用加速器取代反应堆。我们报告医学应用离子源以及进一步发展的此类情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验