Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America.
PLoS One. 2012;7(2):e31951. doi: 10.1371/journal.pone.0031951. Epub 2012 Feb 22.
Beneficial microbes and probiotic species, such as Lactobacillus reuteri, produce biologically active compounds that can modulate host mucosal immunity. Previously, immunomodulatory factors secreted by L. reuteri ATCC PTA 6475 were unknown. A combined metabolomics and bacterial genetics strategy was utilized to identify small compound(s) produced by L. reuteri that were TNF-inhibitory. Hydrophilic interaction liquid chromatography-high performance liquid chromatography (HILIC-HPLC) separation isolated TNF-inhibitory compounds, and HILIC-HPLC fraction composition was determined by NMR and mass spectrometry analyses. Histamine was identified and quantified in TNF-inhibitory HILIC-HPLC fractions. Histamine is produced from L-histidine via histidine decarboxylase by some fermentative bacteria including lactobacilli. Targeted mutagenesis of each gene present in the histidine decarboxylase gene cluster in L. reuteri 6475 demonstrated the involvement of histidine decarboxylase pyruvoyl type A (hdcA), histidine/histamine antiporter (hdcP), and hdcB in production of the TNF-inhibitory factor. The mechanism of TNF inhibition by L. reuteri-derived histamine was investigated using Toll-like receptor 2 (TLR2)-activated human monocytoid cells. Bacterial histamine suppressed TNF production via activation of the H(2) receptor. Histamine from L. reuteri 6475 stimulated increased levels of cAMP, which inhibited downstream MEK/ERK MAPK signaling via protein kinase A (PKA) and resulted in suppression of TNF production by transcriptional regulation. In summary, a component of the gut microbiome, L. reuteri, is able to convert a dietary component, L-histidine, into an immunoregulatory signal, histamine, which suppresses pro-inflammatory TNF production. The identification of bacterial bioactive metabolites and their corresponding mechanisms of action with respect to immunomodulation may lead to improved anti-inflammatory strategies for chronic immune-mediated diseases.
有益微生物和益生菌种,如雷特氏乳杆菌,会产生具有生物活性的化合物,可调节宿主黏膜免疫。此前,雷特氏乳杆菌 ATCC PTA 6475 分泌的免疫调节因子尚不清楚。采用代谢组学和细菌遗传学相结合的策略,鉴定出雷特氏乳杆菌产生的具有抑制 TNF 作用的小分子化合物。亲水相互作用液相色谱-高效液相色谱(HILIC-HPLC)分离出抑制 TNF 的化合物,并通过 NMR 和质谱分析确定 HILIC-HPLC 馏分的组成。组胺在抑制 TNF 的 HILIC-HPLC 馏分中被鉴定和定量。组胺是一些发酵细菌(包括乳杆菌)通过组氨酸脱羧酶从 L-组氨酸产生的。雷特氏乳杆菌 6475 中组氨酸脱羧酶基因簇中每个基因的靶向诱变表明,组氨酸脱羧酶丙酮酸类型 A(hdcA)、组氨酸/组氨酸反向转运蛋白(hdcP)和 hdcB 参与了 TNF 抑制因子的产生。通过 TLR2 激活的人单核细胞样细胞研究了来源于雷特氏乳杆菌的组氨酸对 TNF 抑制的作用机制。细菌组氨酸通过激活 H2 受体抑制 TNF 产生。雷特氏乳杆菌 6475 的组氨酸刺激 cAMP 水平升高,通过蛋白激酶 A(PKA)抑制下游 MEK/ERK MAPK 信号转导,导致通过转录调控抑制 TNF 产生。总之,肠道微生物组的一个组成部分,雷特氏乳杆菌,能够将膳食成分 L-组氨酸转化为免疫调节信号组胺,抑制促炎 TNF 的产生。细菌生物活性代谢物的鉴定及其对免疫调节的作用机制,可能为慢性免疫介导性疾病的抗炎策略提供新的思路。