Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Japan.
Langmuir. 2012 Mar 20;28(11):5249-56. doi: 10.1021/la205093j. Epub 2012 Mar 12.
Amphiphilic block or graft copolymers have been demonstrated to form a variety of self-assembled nano/microstructures in selective solvents. In this study, the self-association behavior of biodegradable graft copolymers composed of poly(γ-glutamic acid) (γ-PGA) as the hydrophilic segment and L-phenylalanine (Phe) as the hydrophobic segment in aqueous solution was investigated. The association behavior and unimer nanoparticle formation of these γ-PGA-graft-Phe (γ-PGA-Phe) copolymers in aqueous solution were characterized with a focus on the effect of the Phe grafting degree on the intra- and interpolymer association of γ-PGA-Phe. The particle size and number of polymer aggregates (N(agg)) in one particle of the γ-PGA-Phe depended on the Phe grafting degree. The size of γ-PGA-Phe with 12, 27, 35, or 42% Phe grafting (γ-PGA-Phe-12, -27, -35, or -42) was about 8-14 nm and the N(agg) was about 1, supporting the presence of a unimolecular graft copolymer in PBS. The pyrene fluorescence data indicated that γ-PGA-Phe-35 and -42 have hydrophobic domains formed by the intrapolymer association of Phe attached to γ-PGA. These results suggest that the Phe grafting degree is critical to the association behavior of γ-PGA-Phe and that γ-PGA-Phe-35 and -42 could form unimer nanoparticles. Moreover, when γ-PGA-Phe-42 dissolved in DMSO was added to various concentrations of NaCl solution, the particle size and N(agg) could be easily controlled by changing the NaCl concentration during the formation of the particles. These results suggest that biodegradable γ-PGA-Phe is useful for the fabrication of very small nanoparticles. It is expected that γ-PGA-Phe nanoparticles, including unimer particles, will have great potential as multifunctional carriers for pharmaceutical and biomedical applications, such as drug and vaccine delivery systems.
两亲性嵌段或接枝共聚物已被证明在选择性溶剂中形成各种自组装的纳米/微米结构。在这项研究中,研究了由聚(γ-谷氨酸)(γ-PGA)作为亲水段和 L-苯丙氨酸(Phe)作为疏水段组成的可生物降解接枝共聚物在水溶液中的自缔合行为。重点研究了 Phe 接枝度对 γ-PGA-Phe 内聚和共聚的影响,研究了这些 γ-PGA-接枝-Phe(γ-PGA-Phe)共聚物在水溶液中的缔合行为和单体纳米颗粒的形成。γ-PGA-Phe 的粒径和聚合物聚集体数量(N(agg))取决于 Phe 的接枝度。具有 12、27、35 或 42% Phe 接枝(γ-PGA-Phe-12、-27、-35 或-42)的 γ-PGA-Phe 的粒径约为 8-14nm,N(agg)约为 1,支持 PBS 中存在单分子接枝共聚物。芘荧光数据表明,γ-PGA-Phe-35 和-42 具有由与 γ-PGA 连接的 Phe 形成的分子内缔合的疏水域。这些结果表明,Phe 的接枝度对 γ-PGA-Phe 的缔合行为至关重要,并且 γ-PGA-Phe-35 和-42 可以形成单分子纳米颗粒。此外,当 γ-PGA-Phe-42 在 DMSO 中溶解并加入不同浓度的 NaCl 溶液时,通过改变形成颗粒过程中的 NaCl 浓度,可以很容易地控制粒径和 N(agg)。这些结果表明,可生物降解的 γ-PGA-Phe 可用于制造非常小的纳米颗粒。预计 γ-PGA-Phe 纳米颗粒,包括单分子颗粒,将作为药物和疫苗输送系统等药物和生物医学应用的多功能载体具有巨大的潜力。