Suppr超能文献

RNA 及其离子云:溶液散射实验和原子细节模拟。

RNA and its ionic cloud: solution scattering experiments and atomically detailed simulations.

机构信息

Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas, USA.

出版信息

Biophys J. 2012 Feb 22;102(4):819-28. doi: 10.1016/j.bpj.2012.01.013. Epub 2012 Feb 21.

Abstract

RNA molecules play critical roles in many cellular processes. Traditionally viewed as genetic messengers, RNA molecules were recently discovered to have diverse functions related to gene regulation and expression. RNA also has great potential as a therapeutic and a tool for further investigation of gene regulation. Metal ions are an integral part of RNA structure and should be considered in any experimental or theoretical study of RNA. Here, we report a multidisciplinary approach that combines anomalous small-angle x-ray scattering and molecular-dynamics (MD) simulations with explicit solvent and ions around RNA. From experiment and simulation results, we find excellent agreement in the number and distribution of excess monovalent and divalent ions around a short RNA duplex. Although similar agreement can be obtained from a continuum description of the solvent and mobile ions (by solving the Poisson-Boltzmann equation and accounting for finite ion size), the use of MD is easily extended to flexible RNA systems with thermal fluctuations. Therefore, we also model a short RNA pseudoknot and find good agreement between the MD results and the experimentally derived solution structures. Surprisingly, both deviate from crystal structure predictions. These favorable comparisons of experiment and simulations encourage work on RNA in all-atom dynamic models.

摘要

RNA 分子在许多细胞过程中发挥着关键作用。RNA 分子传统上被视为遗传信使,但最近发现它们具有与基因调控和表达相关的多种功能。RNA 作为一种治疗方法和进一步研究基因调控的工具也具有很大的潜力。金属离子是 RNA 结构的一个组成部分,在任何关于 RNA 的实验或理论研究中都应该考虑到它们。在这里,我们报告了一种多学科的方法,该方法结合了异常小角 X 射线散射和分子动力学(MD)模拟以及 RNA 周围的显式溶剂和离子。从实验和模拟结果来看,我们发现短 RNA 双链周围的单价和二价过剩离子的数量和分布非常吻合。尽管可以通过连续体描述溶剂和可移动离子(通过求解泊松-玻尔兹曼方程并考虑有限的离子大小)获得类似的一致性,但 MD 的使用很容易扩展到具有热波动的灵活 RNA 系统。因此,我们还对一个短的 RNA 假结进行了建模,并发现 MD 结果与实验得出的溶液结构之间存在良好的一致性。令人惊讶的是,两者都与晶体结构预测结果不符。这些实验和模拟的良好比较鼓励在全原子动力学模型中进行 RNA 研究。

相似文献

1
RNA and its ionic cloud: solution scattering experiments and atomically detailed simulations.
Biophys J. 2012 Feb 22;102(4):819-28. doi: 10.1016/j.bpj.2012.01.013. Epub 2012 Feb 21.
2
Computational exploration of mobile ion distributions around RNA duplex.
J Phys Chem B. 2010 Jun 24;114(24):8207-20. doi: 10.1021/jp911992t.
4
Mono- and trivalent ions around DNA: a small-angle scattering study of competition and interactions.
Biophys J. 2008 Jul;95(1):287-95. doi: 10.1529/biophysj.107.123174. Epub 2008 Mar 13.
6
Extracting water and ion distributions from solution x-ray scattering experiments.
J Chem Phys. 2016 Jun 7;144(21):214105. doi: 10.1063/1.4953037.
7
Determining the Locations of Ions and Water around DNA from X-Ray Scattering Measurements.
Biophys J. 2015 Jun 16;108(12):2886-95. doi: 10.1016/j.bpj.2015.05.006.
8
The ionic atmosphere around A-RNA: Poisson-Boltzmann and molecular dynamics simulations.
Biophys J. 2012 Feb 22;102(4):829-38. doi: 10.1016/j.bpj.2011.12.055. Epub 2012 Feb 21.
9
Simulations of RNA interactions with monovalent ions.
Methods Enzymol. 2009;469:411-32. doi: 10.1016/S0076-6879(09)69020-0. Epub 2009 Nov 17.

引用本文的文献

2
Predicting RNA Structure and Dynamics with Deep Learning and Solution Scattering.
bioRxiv. 2024 Dec 21:2024.06.08.598075. doi: 10.1101/2024.06.08.598075.
3
Predicting RNA structure and dynamics with deep learning and solution scattering.
Biophys J. 2025 Feb 4;124(3):549-564. doi: 10.1016/j.bpj.2024.12.024. Epub 2024 Dec 25.
5
Sensitivity of the RNA Structure to Ion Conditions as Probed by Molecular Dynamics Simulations of Common Canonical RNA Duplexes.
J Chem Inf Model. 2023 Apr 10;63(7):2133-2146. doi: 10.1021/acs.jcim.2c01438. Epub 2023 Mar 29.
6
Computational Study of the pH-Dependent Ionic Environment around β-Lactoglobulin.
J Phys Chem B. 2022 Nov 17;126(45):9123-9136. doi: 10.1021/acs.jpcb.2c03797. Epub 2022 Nov 2.
7
Visualizing RNA Structures by SAXS-Driven MD Simulations.
Front Bioinform. 2022 Feb 18;2:781949. doi: 10.3389/fbinf.2022.781949. eCollection 2022.
8
RNA Captures More Cations than DNA: Insights from Molecular Dynamics Simulations.
J Phys Chem B. 2022 Nov 3;126(43):8646-8654. doi: 10.1021/acs.jpcb.2c04488. Epub 2022 Oct 19.
9
Insights into the structural stability of major groove RNA triplexes by WAXS-guided MD simulations.
Cell Rep Phys Sci. 2022 Jul 20;3(7). doi: 10.1016/j.xcrp.2022.100971. Epub 2022 Jul 11.
10
Nearest neighbor rules for RNA helix folding thermodynamics: improved end effects.
Nucleic Acids Res. 2022 May 20;50(9):5251-5262. doi: 10.1093/nar/gkac261.

本文引用的文献

1
The ionic atmosphere around A-RNA: Poisson-Boltzmann and molecular dynamics simulations.
Biophys J. 2012 Feb 22;102(4):829-38. doi: 10.1016/j.bpj.2011.12.055. Epub 2012 Feb 21.
3
Counting ions around DNA with anomalous small-angle X-ray scattering.
J Am Chem Soc. 2010 Nov 24;132(46):16334-6. doi: 10.1021/ja107259y. Epub 2010 Nov 3.
4
Predicting electrostatic forces in RNA folding.
Methods Enzymol. 2009;469:465-87. doi: 10.1016/S0076-6879(09)69022-4. Epub 2009 Nov 17.
5
Ion-RNA interactions thermodynamic analysis of the effects of mono- and divalent ions on RNA conformational equilibria.
Methods Enzymol. 2009;469:433-63. doi: 10.1016/S0076-6879(09)69021-2. Epub 2009 Nov 17.
6
Using anomalous small angle X-ray scattering to probe the ion atmosphere around nucleic acids.
Methods Enzymol. 2009;469:391-410. doi: 10.1016/S0076-6879(09)69019-4. Epub 2009 Nov 17.
7
Computational exploration of mobile ion distributions around RNA duplex.
J Phys Chem B. 2010 Jun 24;114(24):8207-20. doi: 10.1021/jp911992t.
8
Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA.
Nucleic Acids Res. 2009 Jul;37(12):3887-96. doi: 10.1093/nar/gkp257. Epub 2009 Apr 24.
9
Direct quantitation of Mg2+-RNA interactions by use of a fluorescent dye.
Methods Enzymol. 2009;455:71-94. doi: 10.1016/S0076-6879(08)04203-1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验