Suppr超能文献

通过卷积序列表示的转移来预测和解释蛋白质可开发性。

Predicting and Interpreting Protein Developability Via Transfer of Convolutional Sequence Representation.

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, United States.

出版信息

ACS Synth Biol. 2023 Sep 15;12(9):2600-2615. doi: 10.1021/acssynbio.3c00196. Epub 2023 Aug 29.

Abstract

Engineered proteins have emerged as novel diagnostics, therapeutics, and catalysts. Often, poor protein developability─quantified by expression, solubility, and stability─hinders utility. The ability to predict protein developability from amino acid sequence would reduce the experimental burden when selecting candidates. Recent advances in screening technologies enabled a high-throughput (HT) developability dataset for 10 of 10 possible variants of protein ligand scaffold Gp2. In this work, we evaluate the ability of neural networks to learn a developability representation from a HT dataset and transfer this knowledge to predict recombinant expression beyond observed sequences. The model convolves learned amino acid properties to predict expression levels 44% closer to the experimental variance compared to a non-embedded control. Analysis of learned amino acid embeddings highlights the uniqueness of cysteine, the importance of hydrophobicity and charge, and the unimportance of aromaticity, when aiming to improve the developability of small proteins. We identify clusters of similar sequences with increased recombinant expression through nonlinear dimensionality reduction and we explore the inferred expression landscape via nested sampling. The analysis enables the first direct visualization of the fitness landscape and highlights the existence of evolutionary bottlenecks in sequence space giving rise to competing subpopulations of sequences with different developability. The work advances applied protein engineering efforts by predicting and interpreting protein scaffold expression from a limited dataset. Furthermore, our statistical mechanical treatment of the problem advances foundational efforts to characterize the structure of the protein fitness landscape and the amino acid characteristics that influence protein developability.

摘要

工程蛋白已成为新型诊断试剂、治疗剂和催化剂。通常,较差的蛋白可开发性——通过表达、溶解度和稳定性来量化——会阻碍其应用。如果能够根据氨基酸序列预测蛋白可开发性,那么在选择候选物时就可以减少实验负担。最近筛选技术的进步使得能够对蛋白配体支架 Gp2 的 10 种可能变体中的 10 种进行高通量(HT)可开发性数据集筛选。在这项工作中,我们评估了神经网络从 HT 数据集学习可开发性表示并将该知识转移到预测重组表达超出观察序列的能力。该模型将学习到的氨基酸属性进行卷积,以预测表达水平,与非嵌入式对照相比,更接近实验方差的 44%。对学习到的氨基酸嵌入的分析强调了半胱氨酸的独特性、疏水性和电荷的重要性以及芳香性的不重要性,这对于提高小蛋白的可开发性很重要。我们通过非线性降维识别具有增加重组表达的相似序列簇,并通过嵌套抽样探索推断的表达景观。该分析能够首次直接可视化适应度景观,并突出了序列空间中进化瓶颈的存在,导致具有不同可开发性的序列的竞争亚群出现。这项工作通过从有限的数据集预测和解释蛋白支架的表达来推进应用蛋白工程的努力。此外,我们对该问题的统计力学处理推进了对蛋白适应度景观结构以及影响蛋白可开发性的氨基酸特征的基础研究。

相似文献

1
Predicting and Interpreting Protein Developability Via Transfer of Convolutional Sequence Representation.
ACS Synth Biol. 2023 Sep 15;12(9):2600-2615. doi: 10.1021/acssynbio.3c00196. Epub 2023 Aug 29.
2
6
Assessment of Therapeutic Antibody Developability by Combinations of In Vitro and In Silico Methods.
Methods Mol Biol. 2022;2313:57-113. doi: 10.1007/978-1-0716-1450-1_4.
7
Determinants of Developability and Evolvability of Synthetic Miniproteins as Ligand Scaffolds.
J Mol Biol. 2023 Dec 15;435(24):168339. doi: 10.1016/j.jmb.2023.168339. Epub 2023 Nov 3.
8
Learning the local landscape of protein structures with convolutional neural networks.
J Biol Phys. 2021 Dec;47(4):435-454. doi: 10.1007/s10867-021-09593-6. Epub 2021 Nov 9.
9
The Therapeutic Antibody Profiler for Computational Developability Assessment.
Methods Mol Biol. 2022;2313:115-125. doi: 10.1007/978-1-0716-1450-1_5.
10
In vitro and in silico assessment of the developability of a designed monoclonal antibody library.
MAbs. 2019 Feb/Mar;11(2):388-400. doi: 10.1080/19420862.2018.1556082. Epub 2019 Jan 18.

引用本文的文献

1
Engineering Affibody Binders to Death Receptor 5 and Tumor Necrosis Factor Receptor 1 With Improved Stability.
Biotechnol Bioeng. 2025 Jun;122(6):1386-1396. doi: 10.1002/bit.28954. Epub 2025 Mar 5.
2
Multi-Objective Design of DNA-Stabilized Nanoclusters Using Variational Autoencoders With Automatic Feature Extraction.
ACS Nano. 2024 Oct 1;18(39):26997-27008. doi: 10.1021/acsnano.4c09640. Epub 2024 Sep 17.

本文引用的文献

1
Protein engineering via sequence-performance mapping.
Cell Syst. 2023 Aug 16;14(8):656-666. doi: 10.1016/j.cels.2023.06.009. Epub 2023 Jul 25.
2
Learning protein fitness models from evolutionary and assay-labeled data.
Nat Biotechnol. 2022 Jul;40(7):1114-1122. doi: 10.1038/s41587-021-01146-5. Epub 2022 Jan 17.
3
Neural networks to learn protein sequence-function relationships from deep mutational scanning data.
Proc Natl Acad Sci U S A. 2021 Nov 30;118(48). doi: 10.1073/pnas.2104878118.
4
The Therapeutic Antibody Profiler for Computational Developability Assessment.
Methods Mol Biol. 2022;2313:115-125. doi: 10.1007/978-1-0716-1450-1_5.
5
6
Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation.
Trends Pharmacol Sci. 2021 Mar;42(3):151-165. doi: 10.1016/j.tips.2020.12.004. Epub 2021 Jan 23.
7
Evaluating Protein Transfer Learning with TAPE.
Adv Neural Inf Process Syst. 2019 Dec;32:9689-9701.
8
Stability liabilities of biotherapeutic proteins: Early assessment as mitigation strategy.
J Pharm Biomed Anal. 2021 Jan 5;192:113650. doi: 10.1016/j.jpba.2020.113650. Epub 2020 Sep 25.
9
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
10
Predicting Antibody Developability Profiles Through Early Stage Discovery Screening.
MAbs. 2020 Jan-Dec;12(1):1743053. doi: 10.1080/19420862.2020.1743053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验