Suppr超能文献

多列深度神经网络用于交通标志分类。

Multi-column deep neural network for traffic sign classification.

机构信息

IDSIA - USI - SUPSI — Galleria 2, Manno - Lugano 6928, Switzerland.

出版信息

Neural Netw. 2012 Aug;32:333-8. doi: 10.1016/j.neunet.2012.02.023. Epub 2012 Feb 14.

Abstract

We describe the approach that won the final phase of the German traffic sign recognition benchmark. Our method is the only one that achieved a better-than-human recognition rate of 99.46%. We use a fast, fully parameterizable GPU implementation of a Deep Neural Network (DNN) that does not require careful design of pre-wired feature extractors, which are rather learned in a supervised way. Combining various DNNs trained on differently preprocessed data into a Multi-Column DNN (MCDNN) further boosts recognition performance, making the system insensitive also to variations in contrast and illumination.

摘要

我们描述了在德国交通标志识别基准测试的最后阶段获胜的方法。我们的方法是唯一达到 99.46%的人类识别率的方法。我们使用快速、完全参数化的 GPU 实现的深度神经网络 (DNN),它不需要精心设计预先布线的特征提取器,而是通过监督学习来学习。将在不同预处理数据上训练的各种 DNN 组合成多列 DNN(MCDNN),进一步提高了识别性能,使系统对对比度和光照变化也不敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验