IDSIA - USI - SUPSI — Galleria 2, Manno - Lugano 6928, Switzerland.
Neural Netw. 2012 Aug;32:333-8. doi: 10.1016/j.neunet.2012.02.023. Epub 2012 Feb 14.
We describe the approach that won the final phase of the German traffic sign recognition benchmark. Our method is the only one that achieved a better-than-human recognition rate of 99.46%. We use a fast, fully parameterizable GPU implementation of a Deep Neural Network (DNN) that does not require careful design of pre-wired feature extractors, which are rather learned in a supervised way. Combining various DNNs trained on differently preprocessed data into a Multi-Column DNN (MCDNN) further boosts recognition performance, making the system insensitive also to variations in contrast and illumination.
我们描述了在德国交通标志识别基准测试的最后阶段获胜的方法。我们的方法是唯一达到 99.46%的人类识别率的方法。我们使用快速、完全参数化的 GPU 实现的深度神经网络 (DNN),它不需要精心设计预先布线的特征提取器,而是通过监督学习来学习。将在不同预处理数据上训练的各种 DNN 组合成多列 DNN(MCDNN),进一步提高了识别性能,使系统对对比度和光照变化也不敏感。
Neural Netw. 2012-2-14
Neural Netw. 2012-2-20
Sensors (Basel). 2015-1-19
IEEE Trans Cybern. 2020-12
Neural Comput. 2009-7
PLoS One. 2015-10-5
Neural Netw. 2010-2-20
Biomedicines. 2023-8-8
Heliyon. 2023-7-25
Sensors (Basel). 2023-3-8
Sensors (Basel). 2023-2-17