Suppr超能文献

基于堆叠的深度神经网络:用于模式分类的深度分析网络。

Stacking-Based Deep Neural Network: Deep Analytic Network for Pattern Classification.

出版信息

IEEE Trans Cybern. 2020 Dec;50(12):5021-5034. doi: 10.1109/TCYB.2019.2908387. Epub 2020 Dec 3.

Abstract

Stacking-based deep neural network (S-DNN) is aggregated with pluralities of basic learning modules, one after another, to synthesize a deep neural network (DNN) alternative for pattern classification. Contrary to the DNNs trained from end to end by backpropagation (BP), each S-DNN layer, that is, a self-learnable module, is to be trained decisively and independently without BP intervention. In this paper, a ridge regression-based S-DNN, dubbed deep analytic network (DAN), along with its kernelization (K-DAN), are devised for multilayer feature relearning from the pre-extracted baseline features and the structured features. Our theoretical formulation demonstrates that DAN/K-DAN relearn by perturbing the intra/interclass variations, apart from diminishing the prediction errors. We scrutinize the DAN/K-DAN performance for pattern classification on datasets of varying domains-faces, handwritten digits, generic objects, to name a few. Unlike the typical BP-optimized DNNs to be trained from gigantic datasets by GPU, we reveal that DAN/K-DAN are trainable using only CPU even for small-scale training sets. Our experimental results show that DAN/K-DAN outperform the present S-DNNs and also the BP-trained DNNs, including multiplayer perceptron, deep belief network, etc., without data augmentation applied.

摘要

基于堆叠的深度神经网络 (S-DNN) 通过多个基本学习模块的堆叠,依次合成用于模式分类的深度神经网络 (DNN) 替代方案。与通过反向传播 (BP) 从端到端训练的 DNN 不同,每个 S-DNN 层,即自学习模块,都要在没有 BP 干预的情况下果断独立地进行训练。在本文中,设计了一种基于岭回归的 S-DNN,称为深度分析网络 (DAN),以及它的核化 (K-DAN),用于从预提取的基线特征和结构化特征中对多层特征进行重新学习。我们的理论公式表明,DAN/K-DAN 通过扰动类内/类间差异来重新学习,除了减少预测误差。我们研究了 DAN/K-DAN 在不同领域(人脸、手写数字、通用对象等)数据集上的模式分类性能。与典型的通过 GPU 从大型数据集训练的 BP 优化 DNN 不同,我们揭示了即使对于小规模训练集,DAN/K-DAN 也可以仅使用 CPU 进行训练。我们的实验结果表明,DAN/K-DAN 优于现有的 S-DNN 以及经过 BP 训练的 DNN,包括多层感知机、深度置信网络等,而无需应用数据增强。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验