Suppr超能文献

设置一个最优的α,使零假设显著性检验中的错误最小化。

Setting an optimal α that minimizes errors in null hypothesis significance tests.

机构信息

Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada.

出版信息

PLoS One. 2012;7(2):e32734. doi: 10.1371/journal.pone.0032734. Epub 2012 Feb 28.

Abstract

Null hypothesis significance testing has been under attack in recent years, partly owing to the arbitrary nature of setting α (the decision-making threshold and probability of Type I error) at a constant value, usually 0.05. If the goal of null hypothesis testing is to present conclusions in which we have the highest possible confidence, then the only logical decision-making threshold is the value that minimizes the probability (or occasionally, cost) of making errors. Setting α to minimize the combination of Type I and Type II error at a critical effect size can easily be accomplished for traditional statistical tests by calculating the α associated with the minimum average of α and β at the critical effect size. This technique also has the flexibility to incorporate prior probabilities of null and alternate hypotheses and/or relative costs of Type I and Type II errors, if known. Using an optimal α results in stronger scientific inferences because it estimates and minimizes both Type I errors and relevant Type II errors for a test. It also results in greater transparency concerning assumptions about relevant effect size(s) and the relative costs of Type I and II errors. By contrast, the use of α = 0.05 results in arbitrary decisions about what effect sizes will likely be considered significant, if real, and results in arbitrary amounts of Type II error for meaningful potential effect sizes. We cannot identify a rationale for continuing to arbitrarily use α = 0.05 for null hypothesis significance tests in any field, when it is possible to determine an optimal α.

摘要

近年来,零假设显著性检验受到了抨击,部分原因是设定α(决策阈值和Ⅰ类错误的概率)为常数(通常为 0.05)的任意性。如果零假设检验的目的是给出我们最有信心的结论,那么唯一合乎逻辑的决策阈值就是使Ⅰ类和Ⅱ类错误概率(或偶尔成本)最小化的那个值。对于传统的统计检验,可以通过计算在临界效应大小处最小化α和β的平均最小α值,轻松地将α设置为最小化Ⅰ类和Ⅱ类错误的组合。这种技术还具有灵活性,可以包含零假设和备择假设的先验概率和/或Ⅰ类和Ⅱ类错误的相对成本(如果已知)。使用最优的α 可以得出更强有力的科学推断,因为它估计并最小化了检验的Ⅰ类错误和相关的Ⅱ类错误。它还使有关相关效应大小和Ⅰ类和Ⅱ类错误的相对成本的假设更加透明。相比之下,使用 α = 0.05 会导致对实际情况下哪些效应大小可能被认为具有显著性的任意决策,并导致对有意义的潜在效应大小的任意数量的Ⅱ类错误。当可以确定最优的 α 时,我们不能为继续在任何领域任意使用 α = 0.05 进行零假设显著性检验找到合理的理由。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e84/3289673/75003acbda0b/pone.0032734.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验