Aix-Marseille Univ, UMR 7287 Institut des Sciences du Mouvement, Marseille, France.
PLoS One. 2012;7(2):e31479. doi: 10.1371/journal.pone.0031479. Epub 2012 Feb 29.
Many experimental approaches to the control of steering rely on the tangent point (TP) as major source of information. The TP is a good candidate to control self-motion. It corresponds to a singular and salient point in the subject's visual field, and its location depends on the road geometry, the direction of self-motion relative to the road and the position of the driver on the road. However, the particular status of the TP in the optical flow, as a local minimum of flow speed, has often been left aside. We therefore assume that the TP is actually an optimal location in the dynamic optical array to perceive a change in the trajectory curvature. In this study, we evaluated the ability of human observers to detect variations in their path curvature from optical flow patterns, as a function of their gaze direction in a virtual environment. We simulated curvilinear self-motion parallel to a ground plane. Using random-dot optic flow stimuli of brief duration and a two-alternative forced-choice adaptive procedure, we determined path curvature discrimination thresholds, as a function of gaze direction. The discrimination thresholds are minimal for a gaze directed toward a local minimum of optical flow speed. A model based on Weber fraction of the foveal velocities (ΔV/V) correctly predicts the relationship between experimental thresholds and local flow velocities. This model was also tested for an optical flow computation integrating larger circular areas in central vision. Averaging the flow over five degrees leads to an even better fit of the model to experimental thresholds. We also found that the minimal optical flow speed direction corresponds to a maximal sensitivity of the visual system, as predicted by our model. The spontaneous gazing strategies observed during driving might thus correspond to an optimal selection of relevant information in the optical flow field.
许多控制转向的实验方法都依赖于切点 (TP) 作为主要信息源。TP 是控制自身运动的一个很好的候选者。它对应于主体视野中的一个奇异而显著的点,其位置取决于道路几何形状、相对于道路的自身运动方向和驾驶员在道路上的位置。然而,TP 在光流中的特殊状态,作为流速的局部最小值,经常被忽略。因此,我们假设 TP 实际上是动态光阵列中感知轨迹曲率变化的最佳位置。在这项研究中,我们评估了人类观察者从光流模式中检测路径曲率变化的能力,作为其在虚拟环境中注视方向的函数。我们模拟了与地面平行的曲线自身运动。使用短暂的随机点光流刺激和二选一强制选择自适应程序,我们确定了路径曲率辨别阈值,作为注视方向的函数。当注视方向指向光流速度的局部最小值时,辨别阈值最小。基于中央凹速度(ΔV/V)韦伯分数的模型正确预测了实验阈值与局部流速之间的关系。该模型还针对整合中央视觉中更大圆形区域的光流计算进行了测试。将流量平均五个度会使模型更符合实验阈值。我们还发现,最小的光流速度方向对应于视觉系统的最大灵敏度,这与我们的模型预测相符。因此,在驾驶过程中观察到的自发凝视策略可能对应于光流场中相关信息的最佳选择。