Laboratory of Energy and Nanosciences, Masdar Institute of Science and Technology, Abu Dhabi, UAE.
Nanotechnology. 2012 Mar 30;23(12):125401. doi: 10.1088/0957-4484/23/12/125401. Epub 2012 Mar 7.
Instantaneous and average energy dissipation distributions in the nanoscale due to short and long range interactions are described. We employ both a purely continuous and a semi-discrete approach to analyze the consequences of this distribution in terms of rate of heat generation, thermal flux, adhesion hysteresis, viscoelasticity and atomic dissipative processes. The effects of peak values are also discussed in terms of the validity of the use of average values of power and energy dissipation. Analytic expressions for the instantaneous power are also derived. We further provide a general expression to calculate the effective area of interaction for fundamental dissipative processes and relate it to the energy distribution profile in the interaction area. Finally, a semi-discrete approach to model and interpret atomic dissipative processes is proposed and shown to lead to realistic values for the atomic bond dissipation and viscoelastic atomic processes.
描述了由于短程和长程相互作用而在纳米尺度上的瞬时和平均能量耗散分布。我们采用了纯粹的连续和半离散方法,根据热生成速率、热通量、黏附滞后、黏弹性和原子耗散过程来分析这种分布的结果。还讨论了峰值的影响,以及在使用平均功率和能量耗散值的有效性方面的问题。还推导出了瞬时功率的解析表达式。进一步提供了一个通用表达式来计算基本耗散过程的相互作用有效面积,并将其与相互作用区域内的能量分布轮廓相关联。最后,提出了一种用于模拟和解释原子耗散过程的半离散方法,并证明其可以得到原子键耗散和黏弹性原子过程的实际值。