Suppr超能文献

迈向阿尔茨海默病的动态生物标志物模型。

Toward a dynamic biomarker model in Alzheimer's disease.

机构信息

Institut Universitaire en Santé Mentale de Québec, 2601 de la Canadíere, QC, Canada.

出版信息

J Alzheimers Dis. 2012;30(1):91-100. doi: 10.3233/JAD-2012-111367.

Abstract

Biomarkers, both biological and imaging, are indicators of specific changes that characterize Alzheimer's disease (AD) progression in vivo. Knowing the precise relationship between biomarkers and disease severity would allow for accurate disease staging and possible forecasting of decline. Jack et al. suggested as an initial hypothesis that this relationship be sigmoidal; the objective of this article is to determine, using large-scale population data from ADNI, the precise shape of this association. We considered six different models (linear; quadratic; robust quadratic; local quadratic regression; penalized B-spline; and sigmoid) and used the Akaike Information Criterion to gauge how well these models compare in conforming to the data. We included 576 subjects (229 controls, 193 AD, and 154 mild cognitive impairment subjects who converted to AD) from the ADNI study, for whom baseline data on cerebrospinal fluid amyloid-β (Aβ)42, phosphorylated tau (p-tau), and total-tau (t-tau), hippocampal volumes, and FDG-PET were available. Analysis of this cross-sectional dataset showed that a local quadratic regression model was 42% more likely than a sigmoid to be the best model for Aβ42. This ratio augments to 22% and 73% for Penalized B-Spline in the case of p-tau and t-tau, respectively; to 3500% for the linear model for FDG-PET; and to 6700% for the Penalized B-Spline for hippocampal volumes. Preliminary, cross-sectional evidence therefore indicates that the shape of the association with disease severity is non-linear and differs between biomarkers.

摘要

生物标志物,包括生物学和影像学标志物,都是特定变化的指标,这些变化特征性地表征了阿尔茨海默病(AD)在体内的进展。了解生物标志物与疾病严重程度的确切关系将有助于进行准确的疾病分期,并有可能预测疾病的衰退。Jack 等人提出了一个初步假设,即这种关系呈 S 型;本文的目的是使用来自 ADNI 的大规模人群数据,确定这种关联的确切形状。我们考虑了六种不同的模型(线性;二次;稳健二次;局部二次回归;惩罚 B 样条;和 S 型),并使用赤池信息量准则来衡量这些模型在符合数据方面的表现。我们纳入了来自 ADNI 研究的 576 名受试者(229 名对照、193 名 AD 和 154 名轻度认知障碍转化为 AD 的受试者),他们在基线时的脑脊液 Aβ42、磷酸化 tau(p-tau)和总 tau(t-tau)、海马体积和 FDG-PET 数据可用。对这个横断面数据集的分析表明,局部二次回归模型比 S 型更有可能成为 Aβ42 的最佳模型,其概率比为 42%。在 p-tau 和 t-tau 的情况下,这一比例分别增加到 22%和 73%;对于 FDG-PET 的线性模型,则增加到 3500%;对于海马体积的惩罚 B 样条模型,则增加到 6700%。因此,初步的横断面证据表明,与疾病严重程度的关联形状是非线性的,并且在生物标志物之间存在差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验