Suppr超能文献

一种用于计算阿尔茨海默病进展评分的计算方法;使用阿尔茨海默病神经影像学计划(ADNI)数据集进行的实验与验证

A computational method for computing an Alzheimer's disease progression score; experiments and validation with the ADNI data set.

作者信息

Jedynak Bruno M, Liu Bo, Lang Andrew, Gel Yulia, Prince Jerry L

机构信息

Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA; Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Laboratoire de Mathématiques Paul Painlevé, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France.

Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Neurobiol Aging. 2015 Jan;36 Suppl 1:S178-84. doi: 10.1016/j.neurobiolaging.2014.03.043. Epub 2014 Oct 17.

Abstract

Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale.

摘要

了解与阿尔茨海默病(AD)相关的生物标志物随时间的变化是评估疾病进展和衡量疾病修饰疗法疗效的关键。在本文中,我们验证了一种AD进展评分模型,该模型使用多种生物标志物,基于以下三个假设来量化受试者的AD进展:(1)所有受试者都有独特的疾病进展;(2)每个受试者的发病年龄和进展速度不同;(3)每个生物标志物作为疾病进展的函数呈S形。拟合该模型的参数是一个具有挑战性的问题,我们使用交替最小二乘优化算法来解决。为了在现实条件下验证这种优化方案,我们使用了阿尔茨海默病神经影像学倡议队列。借助蒙特卡罗模拟,我们表明该模型的大多数全局参数都能得到精确估计,从而能够对拟合良好的生物标志物进行排序,顺序如下:延迟30分钟的雷伊听觉词语学习测验、双侧海马体积之和除以颅内体积,接下来(临床痴呆评定量表框总和得分与简易精神状态检查表得分)顺序不固定,最后是AD评估量表认知子量表。

相似文献

1
A computational method for computing an Alzheimer's disease progression score; experiments and validation with the ADNI data set.
Neurobiol Aging. 2015 Jan;36 Suppl 1:S178-84. doi: 10.1016/j.neurobiolaging.2014.03.043. Epub 2014 Oct 17.
2
Longitudinal Exposure-Response Modeling of Multiple Indicators of Alzheimer's Disease Progression.
J Prev Alzheimers Dis. 2023;10(2):212-222. doi: 10.14283/jpad.2023.13.
4
A computational neurodegenerative disease progression score: method and results with the Alzheimer's disease Neuroimaging Initiative cohort.
Neuroimage. 2012 Nov 15;63(3):1478-86. doi: 10.1016/j.neuroimage.2012.07.059. Epub 2012 Aug 3.
7
Analyzing the effect of APOE on Alzheimer's disease progression using an event-based model for stratified populations.
Neuroimage. 2021 Feb 15;227:117646. doi: 10.1016/j.neuroimage.2020.117646. Epub 2020 Dec 16.
9
Estimating sample sizes for predementia Alzheimer's trials based on the Alzheimer's Disease Neuroimaging Initiative.
Neurobiol Aging. 2013 Jan;34(1):62-72. doi: 10.1016/j.neurobiolaging.2012.03.006. Epub 2012 Apr 13.
10
The use of hippocampal grading as a biomarker for preclinical and prodromal Alzheimer's disease.
Hum Brain Mapp. 2023 Jun 1;44(8):3147-3157. doi: 10.1002/hbm.26269. Epub 2023 Mar 20.

引用本文的文献

1
2
Graph Models of Pathology Spread in Alzheimer's Disease: An Alternative to Conventional Graph Theoretic Analysis.
Brain Connect. 2021 Dec;11(10):799-814. doi: 10.1089/brain.2020.0905. Epub 2021 May 25.
3
Statistical Disease Progression Modeling in Alzheimer Disease.
Front Big Data. 2020 Aug 12;3:24. doi: 10.3389/fdata.2020.00024. eCollection 2020.
4
Robust parametric modeling of Alzheimer's disease progression.
Neuroimage. 2021 Jan 15;225:117460. doi: 10.1016/j.neuroimage.2020.117460. Epub 2020 Oct 16.
5
Amyloid-β Positivity Predicts Cognitive Decline but Cognition Predicts Progression to Amyloid-β Positivity.
Biol Psychiatry. 2020 May 1;87(9):819-828. doi: 10.1016/j.biopsych.2019.12.021. Epub 2020 Jan 7.
6
Computational Causal Modeling of the Dynamic Biomarker Cascade in Alzheimer's Disease.
Comput Math Methods Med. 2019 Feb 3;2019:6216530. doi: 10.1155/2019/6216530. eCollection 2019.
8
A Novel Method to Estimate Long-Term Chronological Changes From Fragmented Observations in Disease Progression.
Clin Pharmacol Ther. 2019 Feb;105(2):436-447. doi: 10.1002/cpt.1166. Epub 2018 Aug 20.
9
Temporal association patterns and dynamics of amyloid-β and tau in Alzheimer's disease.
Eur J Epidemiol. 2018 Jul;33(7):657-666. doi: 10.1007/s10654-017-0326-z. Epub 2017 Oct 25.
10
A multivariate nonlinear mixed effects model for longitudinal image analysis: Application to amyloid imaging.
Neuroimage. 2016 Jul 1;134:658-670. doi: 10.1016/j.neuroimage.2016.04.001. Epub 2016 Apr 16.

本文引用的文献

1
Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study.
Lancet Neurol. 2013 Apr;12(4):357-67. doi: 10.1016/S1474-4422(13)70044-9. Epub 2013 Mar 8.
2
A computational neurodegenerative disease progression score: method and results with the Alzheimer's disease Neuroimaging Initiative cohort.
Neuroimage. 2012 Nov 15;63(3):1478-86. doi: 10.1016/j.neuroimage.2012.07.059. Epub 2012 Aug 3.
3
Toward a dynamic biomarker model in Alzheimer's disease.
J Alzheimers Dis. 2012;30(1):91-100. doi: 10.3233/JAD-2012-111367.
4
The dynamics of cortical and hippocampal atrophy in Alzheimer disease.
Arch Neurol. 2011 Aug;68(8):1040-8. doi: 10.1001/archneurol.2011.167.
6
Serial MRI and CSF biomarkers in normal aging, MCI, and AD.
Neurology. 2010 Jul 13;75(2):143-51. doi: 10.1212/WNL.0b013e3181e7ca82.
7
The dynamics of Alzheimer's disease biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort.
Neurobiol Aging. 2010 Aug;31(8):1263-74. doi: 10.1016/j.neurobiolaging.2010.04.024. Epub 2010 Jun 11.
8
Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade.
Lancet Neurol. 2010 Jan;9(1):119-28. doi: 10.1016/S1474-4422(09)70299-6.
9
Neuropsychological tests accurately predict incident Alzheimer disease after 5 and 10 years.
Neurology. 2005 Jun 14;64(11):1853-9. doi: 10.1212/01.WNL.0000163773.21794.0B.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验