Jedynak Bruno M, Liu Bo, Lang Andrew, Gel Yulia, Prince Jerry L
Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA; Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Laboratoire de Mathématiques Paul Painlevé, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France.
Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA.
Neurobiol Aging. 2015 Jan;36 Suppl 1:S178-84. doi: 10.1016/j.neurobiolaging.2014.03.043. Epub 2014 Oct 17.
Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale.
了解与阿尔茨海默病(AD)相关的生物标志物随时间的变化是评估疾病进展和衡量疾病修饰疗法疗效的关键。在本文中,我们验证了一种AD进展评分模型,该模型使用多种生物标志物,基于以下三个假设来量化受试者的AD进展:(1)所有受试者都有独特的疾病进展;(2)每个受试者的发病年龄和进展速度不同;(3)每个生物标志物作为疾病进展的函数呈S形。拟合该模型的参数是一个具有挑战性的问题,我们使用交替最小二乘优化算法来解决。为了在现实条件下验证这种优化方案,我们使用了阿尔茨海默病神经影像学倡议队列。借助蒙特卡罗模拟,我们表明该模型的大多数全局参数都能得到精确估计,从而能够对拟合良好的生物标志物进行排序,顺序如下:延迟30分钟的雷伊听觉词语学习测验、双侧海马体积之和除以颅内体积,接下来(临床痴呆评定量表框总和得分与简易精神状态检查表得分)顺序不固定,最后是AD评估量表认知子量表。