Bantis Leonidas E, Tsimikas John V, Georgiou Stelios D
Department of Statistics and Actuarial-Financial Mathematics, University of the Aegean, Samos, Greece.
Lifetime Data Anal. 2012 Jul;18(3):364-96. doi: 10.1007/s10985-012-9218-4. Epub 2012 Mar 8.
In this paper we explore the estimation of survival probabilities via a smoothed version of the survival function, in the presence of censoring. We investigate the fit of a natural cubic spline on the cumulative hazard function under appropriate constraints. Under the proposed technique the problem reduces to a restricted least squares one, leading to convex optimization. The approach taken in this paper is evaluated and compared via simulations to other known methods such as the Kaplan Meier and the logspline estimator. Our approach is easily extended to address estimation of survival probabilities in the presence of covariates when the proportional hazards model assumption holds. In this case the method is compared to a restricted cubic spline approach that involves maximum likelihood. The proposed approach can be also adjusted to accommodate left censoring.
在本文中,我们探讨了在存在删失的情况下,通过生存函数的平滑版本来估计生存概率。我们研究了在适当约束下自然三次样条对累积风险函数的拟合情况。在所提出的技术下,问题简化为一个受限最小二乘问题,从而导致凸优化。本文所采用的方法通过模拟与其他已知方法(如Kaplan-Meier法和对数样条估计器)进行了评估和比较。当比例风险模型假设成立时,我们的方法可以很容易地扩展以处理存在协变量时的生存概率估计问题。在这种情况下,该方法与涉及最大似然的受限三次样条方法进行了比较。所提出的方法也可以进行调整以适应左删失。