Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA.
J Biol Chem. 2012 May 4;287(19):15811-25. doi: 10.1074/jbc.M111.334052. Epub 2012 Mar 8.
Algae have recently gained attention as a potential source for biodiesel; however, much is still unknown about the biological triggers that cause the production of triacylglycerols. We used RNA-Seq as a tool for discovering genes responsible for triacylglycerol (TAG) production in Chlamydomonas and for the regulatory components that activate the pathway. Three genes encoding acyltransferases, DGAT1, DGTT1, and PDAT1, are induced by nitrogen starvation and are likely to have a role in TAG accumulation based on their patterns of expression. DGAT1 and DGTT1 also show increased mRNA abundance in other TAG-accumulating conditions (minus sulfur, minus phosphorus, minus zinc, and minus iron). Insertional mutants, pdat1-1 and pdat1-2, accumulate 25% less TAG compared with the parent strain, CC-4425, which demonstrates the relevance of the trans-acylation pathway in Chlamydomonas. The biochemical functions of DGTT1 and PDAT1 were validated by rescue of oleic acid sensitivity and restoration of TAG accumulation in a yeast strain lacking all acyltransferase activity. Time course analyses suggest than a SQUAMOSA promoter-binding protein domain transcription factor, whose mRNA increases precede that of lipid biosynthesis genes like DGAT1, is a candidate regulator of the nitrogen deficiency responses. An insertional mutant, nrr1-1, accumulates only 50% of the TAG compared with the parental strain in nitrogen-starvation conditions and is unaffected by other nutrient stresses, suggesting the specificity of this regulator for nitrogen-deprivation conditions.
藻类最近作为生物柴油的潜在来源引起了关注;然而,关于导致三酰基甘油(TAG)产生的生物触发因素,我们仍知之甚少。我们使用 RNA-Seq 作为发现参与小球藻 TAG 产生的基因和激活该途径的调控成分的工具。三个编码酰基转移酶的基因(DGAT1、DGTT1 和 PDAT1)受氮饥饿诱导,根据其表达模式,它们很可能在 TAG 积累中发挥作用。DGAT1 和 DGTT1 在其他 TAG 积累条件(缺硫、缺磷、缺锌和缺铁)下也显示出 mRNA 丰度的增加。插入突变体 pdat1-1 和 pdat1-2 与亲本菌株 CC-4425 相比,TAG 积累减少了 25%,这表明在小球藻中转酰基途径的相关性。DGTT1 和 PDAT1 的生化功能通过在缺乏所有酰基转移酶活性的酵母菌株中拯救油酸敏感性和恢复 TAG 积累得到验证。时程分析表明,SQUAMOSA 启动子结合蛋白结构域转录因子的 mRNA 增加先于 DGAT1 等脂质生物合成基因,是氮饥饿反应的候选调控因子。插入突变体 nrr1-1 在氮饥饿条件下与亲本菌株相比,仅积累 50%的 TAG,并且不受其他营养胁迫的影响,这表明该调节剂对氮剥夺条件具有特异性。