Suppr超能文献

动脉粥样硬化中的平滑肌细胞表型转化。

Smooth muscle cell phenotypic switching in atherosclerosis.

机构信息

Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, PO Box 801394, Room 1322 Medical Research Building 5, Charlottesville, VA 22908, USA.

出版信息

Cardiovasc Res. 2012 Jul 15;95(2):156-64. doi: 10.1093/cvr/cvs115. Epub 2012 Mar 8.

Abstract

Smooth muscle cells (SMCs) possess remarkable phenotypic plasticity that allows rapid adaptation to fluctuating environmental cues, including during development and progression of vascular diseases such as atherosclerosis. Although much is known regarding factors and mechanisms that control SMC phenotypic plasticity in cultured cells, our knowledge of the mechanisms controlling SMC phenotypic switching in vivo is far from complete. Indeed, the lack of definitive SMC lineage-tracing studies in the context of atherosclerosis, and difficulties in identifying phenotypically modulated SMCs within lesions that have down-regulated typical SMC marker genes, and/or activated expression of markers of alternative cell types including macrophages, raise major questions regarding the contributions of SMCs at all stages of atherogenesis. The goal of this review is to rigorously evaluate the current state of our knowledge regarding possible phenotypes exhibited by SMCs within atherosclerotic lesions and the factors and mechanisms that may control these phenotypic transitions.

摘要

平滑肌细胞(SMCs)具有显著的表型可塑性,使其能够快速适应不断变化的环境线索,包括在血管疾病如动脉粥样硬化的发展和进展过程中。尽管人们已经了解了许多控制培养细胞中 SMC 表型可塑性的因素和机制,但我们对控制体内 SMC 表型转换的机制的了解还远远不够。事实上,在动脉粥样硬化背景下缺乏明确的 SMC 谱系追踪研究,以及在下调典型 SMC 标记基因和/或激活包括巨噬细胞在内的替代细胞类型标记物的表达的病变中识别表型调节的 SMC 存在困难,这使得人们对 SMC 在动脉粥样形成的所有阶段的贡献提出了重大问题。本综述的目的是严格评估我们目前对动脉粥样硬化病变中 SMC 可能表现出的表型以及可能控制这些表型转变的因素和机制的了解。

相似文献

1
Smooth muscle cell phenotypic switching in atherosclerosis.
Cardiovasc Res. 2012 Jul 15;95(2):156-64. doi: 10.1093/cvr/cvs115. Epub 2012 Mar 8.
2
Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity.
Novartis Found Symp. 2007;283:174-91; discussion 191-3, 238-41. doi: 10.1002/9780470319413.ch14.
3
Stem Cell Pluripotency Genes Klf4 and Oct4 Regulate Complex SMC Phenotypic Changes Critical in Late-Stage Atherosclerotic Lesion Pathogenesis.
Circulation. 2020 Nov 24;142(21):2045-2059. doi: 10.1161/CIRCULATIONAHA.120.046672. Epub 2020 Jul 17.
4
Non-coding RNAs: key regulators of smooth muscle cell fate in vascular disease.
Cardiovasc Res. 2018 Mar 15;114(4):611-621. doi: 10.1093/cvr/cvx249.
5
Molecular regulation of vascular smooth muscle cell differentiation in development and disease.
Physiol Rev. 2004 Jul;84(3):767-801. doi: 10.1152/physrev.00041.2003.
6
Molecular and functional interactions among monocytes/macrophages and smooth muscle cells and their relevance for atherosclerosis.
Crit Rev Eukaryot Gene Expr. 2014;24(4):341-55. doi: 10.1615/critreveukaryotgeneexpr.2014012157.
7
Sex-Stratified Gene Regulatory Networks Reveal Female Key Driver Genes of Atherosclerosis Involved in Smooth Muscle Cell Phenotype Switching.
Circulation. 2021 Feb 16;143(7):713-726. doi: 10.1161/CIRCULATIONAHA.120.051231. Epub 2021 Jan 27.
8
Atherosclerosis Is a Smooth Muscle Cell-Driven Tumor-Like Disease.
Circulation. 2024 Jun 11;149(24):1885-1898. doi: 10.1161/CIRCULATIONAHA.123.067587. Epub 2024 Apr 30.
9
Programming smooth muscle plasticity with chromatin dynamics.
Circ Res. 2007 May 25;100(10):1428-41. doi: 10.1161/01.RES.0000266448.30370.a0.

引用本文的文献

1
Evolutionary Patterns of Collagen Fiber Arrangement and Calcification in Atherosclerosis.
Research (Wash D C). 2025 Jul 31;8:0798. doi: 10.34133/research.0798. eCollection 2025.
8
Cellular and molecular mechanisms underlying hemodialysis arteriovenous fistula dysfunction and approaches to promote maturation: a vascular perspective.
Am J Physiol Heart Circ Physiol. 2025 Jul 1;329(1):H241-H257. doi: 10.1152/ajpheart.00010.2025. Epub 2025 Jun 4.
9
Multiomic Landscape of Extracellular Vesicles in Human Carotid Atherosclerotic Plaque Reveals Endothelial Communication Networks.
Arterioscler Thromb Vasc Biol. 2025 Jul;45(7):1277-1305. doi: 10.1161/ATVBAHA.124.322324. Epub 2025 May 29.

本文引用的文献

1
Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms.
Physiol Genomics. 2012 Apr 2;44(7):417-29. doi: 10.1152/physiolgenomics.00160.2011. Epub 2012 Feb 7.
4
Vascular smooth muscle progenitor cells: building and repairing blood vessels.
Circ Res. 2011 Feb 4;108(3):365-77. doi: 10.1161/CIRCRESAHA.110.223800.
5
Bone marrow-derived cells contribute to vascular inflammation but do not differentiate into smooth muscle cell lineages.
Circulation. 2010 Nov 16;122(20):2048-57. doi: 10.1161/CIRCULATIONAHA.110.965202. Epub 2010 Nov 1.
6
Time-course analysis on the differentiation of bone marrow-derived progenitor cells into smooth muscle cells during neointima formation.
Arterioscler Thromb Vasc Biol. 2010 Oct;30(10):1890-6. doi: 10.1161/ATVBAHA.110.209692. Epub 2010 Jun 24.
7
Establishing, maintaining and modifying DNA methylation patterns in plants and animals.
Nat Rev Genet. 2010 Mar;11(3):204-20. doi: 10.1038/nrg2719.
9
Epigenetic inheritance during the cell cycle.
Nat Rev Mol Cell Biol. 2009 Mar;10(3):192-206. doi: 10.1038/nrm2640.
10
Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries.
Circ Res. 2009 Mar 27;104(6):733-41. doi: 10.1161/CIRCRESAHA.108.183053. Epub 2009 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验