Suppr超能文献

在生存模型中加入时变协变量可显著提高对每日住院死亡风险的预测。

Addition of time-dependent covariates to a survival model significantly improved predictions for daily risk of hospital death.

机构信息

Department of Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada.

出版信息

J Eval Clin Pract. 2013 Apr;19(2):351-7. doi: 10.1111/j.1365-2753.2012.01832.x. Epub 2012 Mar 12.

Abstract

RATIONAL, AIMS AND OBJECTIVES: The study aims to determine the extent to which the addition of post-admission information via time-dependent covariates improved the ability of a survival model to predict the daily risk of hospital death.

METHOD

Using administrative and laboratory data from adult inpatient hospitalizations at our institution between 1 April 2004 and 31 March 2009, we fit both a time-dependent and a time-fixed Cox model for hospital mortality on a randomly chosen 66% of hospitalizations. We compared the predictive performance of these models on the remaining hospitalizations.

RESULTS

All comparative measures clearly indicated that the addition of time-dependent covariates improved model discrimination and prominently improved model calibration. The time-dependent model had a significantly higher concordance probability (0.879 versus 0.811) and predicted significantly closer to the number of observed deaths within all risk deciles. Over the first 32 admission days, the integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were consistently above zero (average IDI of +0.0200 and average NRI of 62.7% over the first 32 days).

CONCLUSIONS

The addition of time-dependent covariates significantly improved the ability of a survival model to predict a patient's daily risk of hospital death. Researchers should consider adding time-dependent covariates when seeking to improve the performance of survival models.

摘要

目的

本研究旨在确定通过时变协变量添加入院后信息在多大程度上提高了生存模型预测医院日死亡风险的能力。

方法

使用我院 2004 年 4 月 1 日至 2009 年 3 月 31 日期间成人住院患者的行政和实验室数据,我们分别为随机选择的 66%的住院患者拟合了时变和时定 Cox 模型以预测医院死亡率。我们比较了这些模型在剩余住院患者中的预测性能。

结果

所有比较指标均清楚表明,添加时变协变量可提高模型的区分度,并显著提高模型校准度。时变模型的一致性概率显著更高(0.879 对 0.811),在所有风险十分位数中均更接近观察到的死亡人数。在前 32 天住院期间,综合判别改善(IDI)和净重新分类改善(NRI)始终为正(前 32 天的平均 IDI 为+0.0200,平均 NRI 为 62.7%)。

结论

添加时变协变量可显著提高生存模型预测患者医院日死亡风险的能力。研究人员在寻求提高生存模型性能时应考虑添加时变协变量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验